PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of CFRP anchorages on the flexural behavior of externally strengthened reinforced concrete beams

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advanced composite materials in the form of fiber-reinforced polymer (FRP) have been gaining popularity in the construction industry. One of the main challenges of using externally bonded FRP in repair and strengthening applications is its susceptibility to peeling-of or delamination without achieving the full capacity of the FRP material. Anchoring the FRP laminates has been deemed effective in delaying debonding failure, thus ensuring load continuity between the concrete and FRP. This paper aims to study the effect of two anchorage systems on the strength and ductility of reinforced concrete (RC) beams strengthened with carbon FRP (CFRP) laminates. The anchors considered in this study were end U-wraps and CFRP spike anchors. A total of seven RC beams were cast and strengthened with different arrangements of CFRP laminates and anchors. The test parameters investigated in this study include the length of the FRP sheet, type of anchor, and the number of CFRP spike anchors. Test results showed that flexural strengthening using CFRP laminates enhanced the capacity of the unstrengthened beam by 16-41% at the expense of ductility. Using full-length CFRP sheets significantly improved the overall performance of the beams as opposed to short-length CFRP sheets. Out of the anchored specimens, the best improvement in the capacity was achieved in the specimen anchored with end U-wraps. CFRP spike anchors provided limited enhancement in the load-carrying capacity of the specimens. The efficiency of the spike anchors could be upgraded if longer embedment depth and larger dowel diameter were used. Finally, the ACI440.2R-17 strength predictions were in good agreement with the experimental results.
Rocznik
Strony
art. e242, 1--15
Opis fizyczny
Bibliogr. 53 poz., il., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, American University of Sharjah, Sharjah, United Arab Emirates
Bibliografia
  • 1. Dong J, Wang Q, Guan Z. Composites : part B structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets. Compos B. 2013;44(1):604-12.
  • 2. Amran YHM, Alyousef R, Rashid RSM, Alabduljabbar H. Properties and applications of FRP in strengthening RC structures: a review. Structures. 2018;16:208-38.
  • 3. Mhanna HH, Hawileh RA, Abdalla JA, Salama ASD, Alkhrdaji T. Shear strengthening of reinforced Concrete T-beams with anchored CFRP laminates. J Compos Constr. 2021;25(4):04021030.
  • 4. Helal K, Yehia S, Hawileh R, Abdalla J. Performance of preloaded CFRP-strengthened fiber reinforced concrete beams. Compos Struct. 2020;244: 112262.
  • 5. Godat A, Hammad F, Chaallal O. State-of-the-art review of anchored FRP shear-strengthened RC beams : A Study of Influencing Factors. Compos Struct. 2020;254(June): 112767.
  • 6. Naser MZ, Hawileh RA, Abdalla JA. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: a critical review. Eng Struct. 2019;198: 109542.
  • 7. Nawaz W, Hawileh RA, Saqan EI, Abdalla JA. Effect of longitudinal carbon fiber-reinforced polymer plates on shear strength of reinforced concrete beams. ACI Struct J. 2016;113(3):577-86.
  • 8. Abdalla JA, Hawileh R, Al-tamimi A. Prediction of frp-concrete ultimate bond strength using artificial. https://doi.org/10.1109/ ICMSAO.2011.5775518.
  • 9. Salama ASD, Hawileh RA, Abdalla JA. Performance of externally strengthened RC beams with side-bonded CFRP sheets. Compos Struct. 2019;212:281-90.
  • 10. Gao R, Cao Q, Hu F, Gao Z, Li F. Experimental study on flexural performance of reinforced concrete beams subjected to different plate strengthening. Compos Struct. 2017;176:565-81.
  • 11. Mhanna HH, Hawileh RA, Abdalla JA. Shear behavior of RC T-beams externally strengthened with anchored high modulus carbon fiber-reinforced polymer (CFRP) laminates. Compos Struct. 2021;272: 114198.
  • 12. Ozden S, Atalay HM, Akpinar E, Erdogan H, Vulaş YZ. Shear strengthening of reinforced concrete T-beams with fully or partially bonded fiber-reinforced polymer composites. Struct Concr. 2014;15(2):229-39.
  • 13. Dai JG, Lam L, Ueda T. Seismic retrofit of square RC columns with polyethylene terephthalate (PET) fibre reinforced polymer composites. Constr Build Mater. 2012;27(1):206-17.
  • 14. Yan L, Chouw N. Natural FRP tube confined fibre reinforced concrete under pure axial compression: a comparison with glass/carbon FRP. Thin-Walled Structures. 2014;82:159-69.
  • 15. Popescu C, Schmidt JW, Goltermann P, Sas G. Assessment of RC walls with cut-out openings strengthened by FRP composites using a rigid-plastic approach. Eng Struct. 2017;150:585-98.
  • 16. Mutalib AA, Hao H. The effect of anchorages on FRP strengthening of RC walls to resist blast loads. Appl Mech Mater. 2011;82:497-502.
  • 17. Tahsiri H, Sedehi O, Khaloo A, Raisi EM. Experimental study of RC jacketed and CFRP strengthened RC beams. Constr Build Mater. 2015;95:476-85.
  • 18. Li S, Wang XG, Zhou XG. Debonding behaviors of CFRP strengthened RC beams with weak interfaces. Appl Mech Mater. 2013;351-352:587-91.
  • 19. Ceroni F, Pecce M, Matthys S, Taerwe L. Debonding strength and anchorage devices for reinforced concrete elements strengthened with FRP sheets. Compos B Eng. 2008;39:429-41.
  • 20. Chen GM, Teng JG, Chen JF. Process of debonding in RC beams shear-strengthened with FRP U-strips or side strips. Int J Solids Struct. 2012;49(10):1266-82.
  • 21. Saqan EI, Rasheed HA, Alkhrdaji T. Seismic behavior of carbon fiber-reinforced polymer- strengthened reinforced concrete members with various anchors. ACI Struct J. 2020;117(4):3-14.
  • 22. Baggio D, Soudki K, Noël M. Strengthening of shear critical RC beams with various FRP systems. Constr Build Mater. 2014;66:634-44.
  • 23. Bae S, Belarbi A. Behavior of various anchorage systems used for shear strengthening of concrete structures with externally bonded FRP sheets. J Bridg Eng. 2013;18:837-47.
  • 24. del Rey CE, Dizhur D, Griffith M, Ingham J. Strengthening RC structures using FRP spike anchors in combination with EBR systems. Compos Struct. 2019;209:668-85.
  • 25. Wang X, Pan JW, Xia JF, Wu F. Study on hybrid effects of FRP anchors for strengthening of concrete structures. IOP Conf Ser Mater Sci Eng. 2018;422(1):012013.
  • 26. Sun W, Liu S, Zhang C. An effective improvement for enhancing the strength and feasibility of FRP spike anchors. Compos Struct. 2020;247: 112449.
  • 27. Gora AM, Jaganathan J, Anwar MP, Leung HY. Flexural capacity of bi-directional GFRP strengthened RC beams with end anchorages. Int J Struct Integr. 2018;188:188-207.
  • 28. Valivonis J, Skuturna T, Valivonis J, Skuturna T. Cracking and strength of reinforced concrete structures in flexure strengthened with carbon fiber laminates. 2010; 3730.
  • 29. Haddad RH, Marji CS. Composite strips with U-shaped CFRP wrap anchor systems for strengthening reinforced concrete beams. Int J Civ Eng. 2019;17(11):1799-811.
  • 30. Saqan EI, Rasheed HA, Hawileh RA. An efficient design procedure for flexural strengthening of RC beams based on ACI 440.2R–08. Compos Part B Eng. 2013;49:71-9.
  • 31. Al-Tamimi AK, Hawileh R, Abdalla J, Rasheed HA. Effects of ratio of CFRP plate length to shear span and end anchorage on flexural behavior of SCC RC beams. J Compos Constr. 2011;15(6):908-19.
  • 32. Zhang Y, Nehdi ML. Experimental and analytical investigation on flexural retrofitting of RC T-section beams using CFRP sheets. Appl Sci. 2020;10:1233.
  • 33. Zaki MA, Rasheed HA. Behavior of reinforced concrete beams strengthened using CFRP sheets with innovative anchorage devices. Eng Struct. 2020;215: 110689.
  • 34. Eshwar N, Nanni A, Ibell TJ. Performance of two anchor systems of externally bonded fiber-reinforced polymer laminates. ACI Mater J. 2008;105:72-81.
  • 35. Al-Atta B, Kalfat R, Al-Mahaidi R, Al-Mosawe A. Influence of anchorage systems on externally-bonded CFRP sheets used for flexural strengthening. Int Conf Eng Sci. 2020;671:012105.
  • 36. Lim J, Kim J, del Rey Castillo E, Griffith MC, Dizhur D, Ingham JM. Characterization of Bent Fibre Reinforced Polymer (FRP) Anchors Exhibiting Fiber Rupture Failure Mode. Proceedings of The New Zealand Concrete Industry Conference 2016; (October).
  • 37. Kalfat R. Improvement of FRP-to-concrete bond performance using bidirectional fiber patch anchors combined with FRP spike anchors. Compos Struct. 2016;155:89-98.
  • 38. Kalfat R, Al-Mahaidi R. Mitigation of premature failure of FRP bonded to concrete using mechanical substrate strengthening and FRP spike anchors. Compos B. 2016;94:209-17.
  • 39. Kim SJ, Smith ST. Behaviour of handmade FRP anchors under tensile load in uncracked concrete. Adv Struct Eng. 2009;12(6):845-66.
  • 40. Zaki MA, Rasheed HA, Roukerd RR, Raheem M. Performance of reinforced concrete T beams strengthened with flexural CFRP sheets and secured using CFRP splay anchors. Eng Struct. 2020;210: 110304.
  • 41. Kim I, Jirsa JO, Bayrak O. Anchorage of carbon fiber-reinforced polymer on side faces of reinforced concrete beams to provide continuity. ACI Struct J. 2013. https://doi.org/10.14359/51686 163.
  • 42. ASTM C39/C39M-18. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA; 2018.
  • 43. ASTM C496/C496M-11. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken, PA; 2017.
  • 44. BS 1881-116. BS 1881-116:1983. Testing Concrete. Part 116: Method for determination of compressive strength of concrete cubes. British Standard Institution, London, UK; 2019. British Standards Institution (BSI) 1983;
  • 45. SikaWrap-300C. Woven Unidirectional Carbon Fibre Fabric, designed for Structural Strengthening Applications as Part of the SIKA Strengthening System. Product data sheet from Sika; Sika GCC, UAE; 2017.
  • 46. Sikadur-330. Two-part epoxy impregnation resin. Product data sheet from Sika; Sika GCC, UAE; 2017.
  • 47. SikaWrap-300C. Carbon fber fabric for structural strengthening. product data sheet from Sika; Sika Schweiz AG, Zürich, Switzerland.2003;1-3.
  • 48. Ding J, Wang F, Huang X, Chen S. The effect of CFRP length on the failure mode of strengthened concrete beams. Polymers. 2014;6:1705-26.
  • 49. Mohammed M, Kadhim A. Effect of CFRP plate length strengthening continuous steel beam. Constr Build Mater. 2012;28(1):648-52.
  • 50. Kalfat R, Al-Mahaidi R, Scott T. Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites : State-of-the-Art review. J Compos Constr. 2013;17(1):14-33.
  • 51. del Rey CE, Kanitkar R, Smith ST, Gri MC, Ingham JM. Design approach for FRP spike anchors in FRP-strengthened RC structures. Compos Struct. 2019;214:23-33.
  • 52. Bai Y, Dai J, Mohammadi M, Lin G, Mei S. Stiffness-based design-oriented compressive stress-strain model for largerupture-strain (LRS) FRP-confined concrete. Compos Struct. 2019;223: 110953.
  • 53. ACI440.2R-17. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute, Farmington Hills, U.S.A.2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68c35712-23da-4485-92dd-b3ab6271a0de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.