PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear expression derivation and parameter evaluation of Hoek-Brown criterion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hoek-Brown criterion is one of the most widely used strength criteria in the field of rock engineering, which can reflect the nonlinear empirical relationship between the ultimate principal stresses in rock failure, while the determination of Hoek-Brown parameters is still controversial. The evaluation of Hoek-Brown parameters according to geological strength index (GSI) classification of rock mass involves engineering experiences and subjectivity, and the fitting method of Hoek-Brown parameters based on laboratory triaxial experimental results of multiple fractured rocks is also not going to be easy. Besides, the majority of previous studies were still carried out through the triaxial tests of intact rocks. In this study, the shear expression of Hoek-Brown criterion was derived, and an approximate method for determining Hoek-Brown parameters basedon shear tests was established. Primarily, Hoek-Brown criterion was briefly reviewed and the variations of Hoek-Brown parameters with the change of GSI was analyzed. When GSI decreases from 100 to 50, the reduction of a is only 0.006.While s shows almost no change and approximates to 0 when GSI decreases from 50 to 0. On this basis, the existing shear expression of Hoek-Brown criterion for intact rock (GSI = 100) was extended to the fractured rock mass with 50 < GSI < 100. In addition, the approximate shear expression of Hoek-Brown criterion for fractured rock mass in the range of 0 < GSI < 50 was deduced by assuming s = 0. Then, Hoek-Brown parameters can be calculated through shear tests and MATLAB programing. Finally, based on the structural plane occurrence information of Tangdan copper mine, a random fracture network was generated by Monte Carlo method to prepare random fractured rock mass samples for compression-shear experiments, which were employed to verify the proposed method.
Rocznik
Strony
art. no. e77, 1--9
Opis fizyczny
Bibliogr. 37 poz., il., tab., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha, Hunan, China
autor
  • School of Civil Engineering, Hefei University of Technology, Hefei, China
autor
  • School of Energy and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
Bibliografia
  • 1. Priest SD. Determination of shear strength and three-dimensional yield strength for the Hoek-Brown criterion. Rock Mech Rock Eng. 2005;38:299-327.
  • 2. Xie SJ, Lin H, Chen YF, Wang YX. A new nonlinear empirical strength criterion for rocks under conventional triaxial compression. J Central South Univ. 2021;28:1448-58.
  • 3. Xia K, Chen C, Liu X, Zheng Y, Zhou Y. Estimation of rock mass mechanical parameters based on ultrasonic velocity of rock mass and Hoek-Brown criterion and its application to engineering. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering. 2013;32:1458-1466.
  • 4. Zhang C, Wang Y, Jiang T. The propagation mechanism of an oblique straight crack in a rock sample and the effect of osmotic pressure under in-plane biaxial compression. Arab J Geosci. 2020;13:736. https://doi.org/10.1007/s12517-020-05682-3.
  • 5. Lin D, Yuan G, Shang Y, Liu K, Zhang B. Research on parameters of Hoek-Brown criterion and application based on core classification. Chin J Rock Mech Eng. 2013;32:143-149.
  • 6. Hoek E, Brown ET. Empirical strength criterion for rock masses. J Geotech Eng Div. 1980;106:1013-35.
  • 7. Jin JC, She CX, Shang PY. A strain-softening model of rock based on Hoek-Brown criterion. Rock Soil Mech. 2020;41:939-951.
  • 8. Serrano A, Olalla C, González J. Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion. Int J Rock Mech Min Sci. 2000;37:1013-8.
  • 9. He S, Wang C. Study on failure characteristics and ultimate pullout force of prestressed cable. Chin J Rock Mech Eng. 2004;23:2966-71.
  • 10. Saada Z, Maghous S, Garnier D. Seismic bearing capacity of shallow foundations near rock slopes using the generalized Hoek-Brown criterion. Int J Numer Anal Meth Geomech. 2011;35:724-748.
  • 11. Saada Z, Maghous S, Garnier D. Stability analysis of rock slopes subjected to seepage forces using the modified Hoek-Brown criterion. Int J Rock Mech Min Sci. 2012;55:45-54.
  • 12. Li AJ, Merifield RS, Lyamin AV. Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion. Comput Geotech. 2011;38:546-558.
  • 13. Yang Y, Xia Y, Zheng H, Liu Z. Investigation of rock slope stability using a 3D nonlinear strength-reduction numerical manifold method. Eng Geol. 2021;292:106285.
  • 14. Yuan W, Li J, Li Z, Wang W, Sun X. A strength reduction method based on the Generalized Hoek-Brown (GHB) criterion for rock slope stability analysis. Comput Geotech. 2020;117:103240. https://doi.org/10.1016/j.compg eo.2019.103240.
  • 15. Shen J, Karakus M, Xu C. Chart-based slope stability assessment using the Generalized Hoek-Brown criterion. Int J Rock Mech Min Sci. 2013;64:210-219.
  • 16. Single B, Goel RK, Mehrotra VK, Garg SK, Allu MR. Effect of intermediate principal stress on strength of anisotropic rock mass. Tunn Undergr Space Technol. 1998;13:71-79.
  • 17. Cundall P, Carranza-Torres C, Hart R. A new constitutive model based on the Hoek-Brown failure criterion. In: Balkema, editor. Proceedings of the Third International FLAC Symposium “FLAC and Numerical Modeling in Geomechanics”. Sudbury, Canada2003. pp 17-25.
  • 18. Shi C, Jiang X, Zhu Z, Hao Z. Study of rock damage constitutive model and discussion of its parameters based on Hoek-Brown criterion. Chin J Rock Mech Eng. 2011;30:2647-52.
  • 19. Wan RG. Implicit integration algorithm for Hoek-Brown elasticplastic model. Comput Geotech. 1992;14:149-177.
  • 20. Melkoumian N, Priest SD, Hunt SP. Further development of the three-dimensional Hoek-Brown yield criterion. Rock Mech Rock Eng. 2009;42:835-847.
  • 21. Alejano LR, Arzúa J, Bozorgzadeh N, Harrison JP. Triaxial strength and deformability of intact and increasingly jointed granite samples. Int J Rock Mech Min Sci. 2017;95:87-103.
  • 22. Hoek E. Hoek–Brown failure criterion-2002 edition. In: Proceedings of the Fifth North American Rock Mechanics Symposium. 2002;1:18-22
  • 23. Sonmez H, Ulusay R. Modifications to the geological strength index (GSI) and their applicability to stability of slopes. Int J Rock Mech Min Sci. 1999;36:743-760. https://doi.org/10.1016/ s0148-9062(99) 00043-1.
  • 24. Hoek E, Brown ET. The HoekeBrown failure criterion and GSI-2018 edition. J Rock Mech Geotech Eng. 2019;11:445-463.
  • 25. Hoek E. Strength of rock and rock masses. ISRM News J. 1994;2:4-16.
  • 26. Hoek E, Brown ET. Practical estimates of rock mass strength. Int J Rock Mech Mining Sci. 1997;34:1165-1186.
  • 27. Hoek E, Marinos PG. Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels Tunnelling Int. 2000;132:45-51.
  • 28. Ren JL, Chen X, Wang DY, Yan-Nan L. Instantaneous linearization strength reduction technique for generalized Hoek-Brown criterion. Rock Soil Mech. 2019;40:4865-72.
  • 29. Kumar P. Shear failure envelope of Hoek-Brown criterion for rock mass. Tunn Undergr Space Technol. 1998;13:453-458.
  • 30. Gao K, Bozorgzadeh N, Harrison JP. The equivalence of three shear-normal stress forms of the Hoek-Brown Criterion. Rock Mech Rock Eng. 2019;52:3501-3507.
  • 31. Hoek E. Strength of jointed rock masses. Geotechnique. 1983;33:187-223.
  • 32. Shen J, Priest SD, Karakus M. Determination of Mohr-Coulomb shear strength parameters from generalized Hoek-Brown criterion for slope stability analysis. Rock Mech Rock Eng. 2012;45:123-129.
  • 33. Zhao Y, Zhang C, Wang Y, Lin H. Shear-related roughness classification and strength model of natural rock joint based on fuzzy comprehensive evaluation. Int J Rock Mech Mining Sci. 2020;128:104550. https://doi.org/10.1016/j.ijrmms.2020.104550.
  • 34. Fan X, Jiang X, Liu Y, Lin H, Li K, He Z. Local stress distribution and evolution surrounding flaw and opening within rock block under uniaxial compression. Theoret Appl Fract Mech. 2021. https://doi. org/10.1016/j.tafmec.2021.102914
  • 35. Zhao Y, Zhang L, Wang W, Liu Q, Tang L, Cheng G. Experimental study on shear behavior and a revised shear strength model for in filled rock joints. Int J Geomech. 2020;20:04020141.
  • 36. Zhang CY, Lin H, Qiu CM, Jiang TT, Zhang JH. The effect of cross-section shape on deformation, damage and failure of rocklike materials under uniaxial compression from both a macro and micro viewpoint. Int J Damage Mech. 2020;20:1-20.
  • 37. Zhu H, Zhang Q, Zhang L. Review of research progresses and applications of Hoek-Brown strength criterion. Chin J Rock Mech Eng. 2013;32:1945-63.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68b879a0-7eb0-4fc8-b390-b3d00c51612e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.