PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper and cobalt (Cu-Co) are strategic metals for the Democratic Republic of Congo (DRC), and nearly 20% of the country's GDP is supported by their exports. At present, the country classifies itself as the leading copper producer in Africa with an output in the region of a million tonnes and possesses nearly 60% of the world's reserves of Co; a metal exclusively exported in the form of salts or semi-finished products. Concentrators play a very important role in the growth of Cu-Co metal production, which is needed in order to meet rapidly growing global demand and to increase government revenues through mining royalties. This article reviews the major process flow sheets and reagent suites in practice at concentrators operated in the DRC for the beneficiation of Cu-Co values from various ore types. The comprehensive compilation of pertinent laboratory and industrial data is intended to provide practising specialists, metallurgists, and academics conducting research on Congolese Cu-Co ores with a single well-detailed reference source. Emphasis is placed on froth flotation as the major technique for the beneficiation of Cu-Co minerals.
Rocznik
Strony
226--246
Opis fizyczny
Bibliogr. 148 poz.
Twórcy
  • Inorganic Chemistry Unit, Department of Chemistry, Faculty of the Sciences, University of Lubumbashi, Likasi Avenue, PO BOX 1825, City of Lubumbashi, Haut-Katanga Province, Democratic Republic of the Congo
  • Department of Metallurgy, University of Johannesburg, Doornfontein Campus, PO BOX 17911, Johannesburg, 2028, South Africa
  • Economic Geology Unit, Department of Geology, Faculty of the Sciences, University of Lubumbashi, Kasapa Road, PO BOX 1825, City of Lubumbashi, Haut-Katanga Province, Democratic Republic of the Congo
  • Department of Exploration Geology, Tenke Fungurume Mining S.A., Airport Road, TFM Building, Lubumbashi, Haut-Katanga province, Democratic Republic of the Congo
  • Research Centre of Minerals Processing, Higher School of Applied Techniques in Lubumbashi, Haut-Katanga Province, Democratic Republic of the Congo
Bibliografia
  • 1. Albert, P. (2015). The Kinsenda Project (DRC). CEO’s presentation at 121 Conference. Jinchuan Group International15-17.
  • 2. Ancia, Ph., Frenay, J., & Dandois, Ph. (1997). Comparison of the Knelson and Falcon centrifugal separators. Proceeding of the Mozley International Symposium, Falmouth, Cornwall, UK, 4-5 June (pp. 53-62). .
  • 3. Barbaro, M., Herrera Urbina, R., Cozza, C., Fuerstenau, D., & Marabini, A. (1997). Flotation of oxidized minerals of copper using a new synthetic chelating reagent as collector. International Journal of Mineral Processing, 50(4), 275-287. https://doi.org/10.1016/S0301-7516(97)00045-8.
  • 4. Bastin, D., Frenay, J., & Philippart, P. (2003). Ammonium sulphate as promoting agent of the sulphidization process of Cu-Co oxide ores from the Luiswishi Deposit (DRC). In L. Lorenzen, & D. Bradshaw (Eds.). Proceedings of the 21st International Mineral Processing Congress (pp. 434). Cape Town, South Africa.
  • 5. Bessière, J., El Housni, A., & Prédali, J. J. (1991). Dielectric study of activation and deactivation of malachite by sulfide ions. International Journal of Mineral Processing, 33(1-4), 165-183. https://doi.org/10.1016/0301-7516(91)90050-S.
  • 6. Bila, K. M. (2006). Study of floatability of oxidised ores of copper and cobalt from the Shanguruwe deposit in view their feed to the Kambove Concentrator. A research project carried out by the Chemistry Department, Faculty of Sciences, University of Lubumbashi13-35.
  • 7. Black, C., Zammit, M., Dorling, S., & Readett, D. (2011). Kipoi Copper Project Stage 2 Preliminary Economic Assessment, Democratic Republic of Congo. Perth, Western Australia: Independent Technical Report (NI 43-101) Prepared for Tiger Resources Limited, Cube Consulting Pty Ltd. Accessed on July the 24th, 2019 and available via https://www.resourcedata.org//.
  • 8. Bogusz, E., Brienne, S., Butler, I., Rao, S., & Finch, J. (1997). Metal Ions and Dextrin Adsorption on Pyrite. Minerals Engineering, 10(4), 441-445. https://doi.org/10.1016/S0892-6875(97)00020-4.
  • 9. Booth, G., Cameron, A., Fahey, G., & Lawlord, M. (2010). Anvil Mining Limited NI 43-101 Technical Report Kinsevere Copper Project, Katanga Province, Democratic Republic of Congo. Retrieved https://secure.kaiserreseach.com//.
  • 10. Boulton, A., Fornasiero, D., & Ralson, J. (2001). Depression of iron sulphide flotation in zinc roughers. Minerals Engineering, 14(9), 1067-1079. https://doi.org/10.1016/S0892-6875(01)00112-1.
  • 11. Brabham, G., Winterbottom, J., Abbott, J., & De Klerk, Q. (2014). National Instrument 43- 101, Technical Report Kapulo Copper Project (DRC). A Feasibility Study Update prepared by Mawson West Limited. Retrieved 24 October 2019 from at: https://www.marketwatch.com//.
  • 12. Bulatovic, S. M. (2007). Handbook of Flotation Reagents, Chemistry, Theory and Practice: Flotation of Sulfide Ores. Amsterdam, NI: Elsevier Science & Technology Books.
  • 13. Burt, R. O. (1984). Developments in Mineral Processing, Volume 5: Gravity Concentration Technology. New York: Elsevier Science Publishers B.V.
  • 14. Bustamante, H., & Castro, S. H. (1975). Hydrophobic effects of sodium sulphide on malachite flotation. Transactions of the Institution of Mining and Metallurgy, Section C, 84, 167-171.
  • 15. Cailteux, J. L. H., Kampunzu, A. B., Lerouge, C., Kaputo, A. K., & Milesi, J. P. (2005). Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copperbelt. Journal of African Earth Sciences, 42(1-5), 134-158. https://doi.org/10.1016/j.jafrearsci.2005.08.001.
  • 16. Castro, S. H., Soto, H., Goldfarb, F., & Laskowski, J. S. (1974). Sulphidizing reactions in the flotation of oxidized copper minerals, Part 1- Chemical factors in the sulphidization of copper oxide. International Journal of Mineral Processing, 1(2), 141-149. https://doi.org/10.1016/0301-7516(74)90010-6.
  • 17. Chabu, M., & Boulegue, J. (1992). Barian feldspar and muscovite from the Kipushi Pb-Zn- Cu deposit (Shaba, Zaire). Canadian Mineralogist, 30(4), 1143-1152.
  • 18. Chadwick, J. (2007). Kinsenda, one of the richest mines, Copperbelt operations focus. International Mining February, 7-9.
  • 19. Chadwick, J. (2008). CAMEC-The cobalt champion, Reports on what is today probably the leading cobalt miner in the world. International Mining. July, 8-16. Accessible at: www.gfx.infomine.com.
  • 20. Chadwick, J. (2013). Advances in Copper Extraction: Cu roundup. International Mining March, 20-32.
  • 21. Chadwick, J. (2015). Water management. International Mining. March, 42-57. Also accessible via: http://www.min-engo.com//.
  • 22. Chander, S. (2003). A brief review of pulp potentials in sulfide flotation. International Journal of Minerals Processing, 72(1), 141-150. https://doi.org/10.1016/S0301-7516(03)00094-2.
  • 23. Chmielewski, T., & Wheelock, T. (1991). Thioglycolic Acid as a Flotation Depressant for Pyrite. In P. R. Dugan, D. R. Quigley, & Y. A. Attia (Eds.). Processing and Utilisation of High Sulphur Coals IV (pp. 295-307). Amsterdam: Elsevier.
  • 24. Clark, D. W., Newell, A. J. H., Chilman, G. F., & Capps, P. G. (2000). Improving flotation recovery of copper sulphides by nitrogen gas and sulphidisation conditioning. Minerals Engineering, 1(12), 1197-1206. https://doi.org/10.1016/S0892-6875(00) 00104-7.
  • 25. Countois, Y., Maurice, R., Arpin, M., & Demers, B. (2003). Étude sur la restauration des mines de cuivre et de cobalt en République Démocratique du Congo, Rapport d’étude initiale N M-6708 (603082) des recherches en République Démocratique du Congo et rédigé par SNC-Lavalin International, Division Environnement, Montréal (Canada). 213.
  • 26. Creswell, G. M. (2001). Pre-concentration of base metals ores by dense medium separation. The Southern African Institute of Mining and Metallurgy, Copper, Cobalt, Nickel and Zinc recovery conference 2001, Johannesburg, South Africa (pp. 1-10). .
  • 27. Crowson, P. (2007). The copper industry 1945-1975. Resources Policy, 23(1-2), 1-18. https://doi.org/10.1016/j.resourpol.2007.03.004.
  • 28. Crozier, R. D. (1992). Flotation: Theory, reagents and ore testing. Oxford: Pergamon Press.
  • 29. Davidson, M. S. (2009). An Investigation of Copper Recovery from a Sulphide Oxide Ore with a Mixed Collector System (MSc Thesis). Department of Mining Engineering-195. Kingston, Ontario, Canada: Queen’s University.
  • 30. Davis, J. J., & Napier-Munn, T. J. (1987). The influence of medium viscosity on the performance of dense medium cyclones in coal preparation. In P. Wood (Ed.). Proceedings of the 3rd International Conference on Hydrocyclones, Oxford, BHRA (pp. 155-165). .
  • 31. De Putter, T., Mees, F., Decree, S., & Dewaele, S. (2010). Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment (Katanga, Democratic Republic of Congo). Ore Geology Reviews, 38(1-2), 90-100. https://doi.org/10.1016/j.oregeorev.2010.07.001.
  • 32. Decree, S., Deloule, E., De Putter, T., Dewaele, S., Mees, F., Baele, J., & Marignac, C. (2014). Dating of U-rich heterogenite: New insights into U deposit genesis and U cycling in the Katanga Copperbelt. Ore Geology Reviews, 40(1), 81-89.
  • 33. Decrée, S., Deloule, E., Ruffet, G., Dewaele, S., Mees, F., Marignac, C., Yans, J., & De Putter, T. (2010). Geodynamic and climate controls in the formation of Mio-Pliocene world class oxidized cobalt and manganese ores in the Katanga province, DR Congo. Mineral Deposita, 45, 621-629. https://doi.org/10.1007/s00126-010-0305-8.
  • 34. Dewaele, S., Muchez, P., Vets, J., Fernandez-Alonzo, M., & Tack, L. (2006). Multiphase origin of the Cu-Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo). Journal of African Earth Sciences, 46(5), 455-469. https://doi.org/10.1016/j.jafrearsci.2006.08.002.
  • 35. Drzymala, J. (2007). Mineral Processing, Foundations of theory and practice of minerallurgy (1st English edition). Wroclaw University of Technology510.
  • 36. Dunglison, M. E. (1999). A general model of the dense medium cyclone. Unpublished PhD ThesisBrisbane: University of Queensland279.
  • 37. El Desouky, H. A., Muchez, P., & Cailteux, J. (2009). Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geology Reviews, 36(4), 315-332. https://doi.org/10.1016/j.oregeorev.2009.07.003.
  • 38. Ellis, M. W. (1979). The Mineral Industry of Zaire, U.S. Geological Survey. 1061-1066 Minerals Yearbook 1978-1979.
  • 39. Evrard, L., & De Cuyper, J. (1975). Flotation of copper-cobalt oxide ores with alkylhydroxamates. Proceedings of the 11th International Mineral Processing Congress (pp. 655- 669). Calgliari: Instituto di Arte Mineraria.
  • 40. Feng, D., & Aldrich, C. (1999). Effect of particle size on flotation of complex sulphide ores. Minerals Engineering, 12(7), 721-731. https://doi.org/10.1016/S0892-6875(99)00059-X.
  • 41. Fisher, K. G. (2011). Cobalt processing developments, The 6th Southern African Base Metals Conference. The Southern African Institute of Mining and Metallurgy237-258.
  • 42. Francois, A. (1973). L'extrémité occidentale de l'arc cuprifčre Shabien, Etude géologique. Republique du Zaire: Memoire du Departement Geologique, Gecamines, Likasi65p.
  • 43. Fuerstenau, D. W., Herrera-Urbina, R., & McGlashan, D. W. (2000). Studies on the applicability of chelating agents as universal collectors for copper minerals. International Journal of Mineral Processing, 58(1), 15-33. https://doi.org/10.1016/S0301-7516(99)00058-7.
  • 44. Garrels, R. M., & Naeser, C. R. (1958). Equilibrium distribution of dissolved sulphur species in water at 25°C and 1atm total pressure. Geochimica and Cosmochimica Acta, 15(1), 2-113. https://doi.org/10.1016/0016-7037(58)90014-0.
  • 45. Géo, G. C. M./ (1981). Rapport d’activités, Département de Géologie. Likasi, R.D.C: Generale des Carrieres et des Mines. Gonzalez, G., & Soto, H. (1978). The effect of thermal treatment on the flotation of chrysocolla. International Journal of Mineral Processing, 5(2), 153-162. https://doi.org/10.1016/0301-7516(78)90012-1.
  • 46. Gorham, M., & Knight, S. (1977). Congo Copper and Cobalt - Business and Financial letter. The Research Department, Federal Bank of San Francisco.
  • 47. Gush, J. D. C. (2005). Flotation of oxide minerals by sulphidization - the development of a sulphidization control system for laboratory test work. Journal of Southern African Institute of Mining and Metallurgy, 105(3), 193-198.
  • 48. Habashi, F. (Ed.). (1997). Handbook of extractive metallurgy, Volume II: Primary metals, secondary metals and light metals. Weinhein, Federal Republic of Germany: Wiley- VCH.
  • 49. Haest, M., & Muchez, P. (2011). Stratiform and vein-type deposits in the Pan-African Orogen in Central and Southern Africa: evidence for multiphase mineralisation. Geologica Belgica, 14(1-2), 23-44.
  • 50. Haest, M., Muchez, P., Dewaele, S., Boyce, A. J., von Quadt, A., & Schneider, J. (2009). Petrographic, fluid inclusion and isotopic study of the Dikulushi Cu-Ag deposit, Katanga (D.R.C.): implications for exploration. Mineralium Deposita, 44(5), 505-522. https://doi.org/10.1007/s00126-009-0230-x.
  • 51. Haest, M., Muchez, P., Dewaele, S., Franey, N., & Tyler, R. (2007). Structural control on the Dikulushi Cu-Ag deposit, Katanga, Democratic republic of Congo. Economic Geology, 102(7), 1321-1333. https://doi.org/10.2113/gsecongeo.102.7.1321.
  • 52. He, Y. B., & Laskowski, J. S. (1994). Effect of dense medium properties on the separation performance of a dense medium cyclone. Minerals Engineering, 7(2/3), 209-221. https://doi.org/10.1016/0892-6875(94)90065-5.
  • 53. Hughes, T. C. (2005). AM2 - a hydroxamates flotation collector reagent for oxides and oxidized mineral systems, Flotation feature - Technical paper. Australian Journal of Mineralogy, 58-59 Melburne, July/August 2005.
  • 54. Ilunga, M. (2012). The study of floatability of sulfide ores of copper from the South Kabolela deposit: a research project carried at the Kakanda Concentrator- Boss mining in view optimization of the reagents dosage. Chemistry Department, Faculty of the Sciences, University of Lubumbashi16-43.
  • 55. Jones, M. H. (1990). Some recent developments in the measurement and control of xanthate, perxanthate, sulphide and redox potential in flotation. International Journal of Mineral Processing, 33(1-4), 193-205. https://doi.org/10.1016/0301-7516(91) 90052-K.
  • 56. Jones, M. H., & Woodcock, J. T. (1978a). Evaluation of ion-selective electrode for control of sodium sulphide additions during laboratory flotation of oxidised ores. Transactions of the Institution of Mining and Metallurgy, Section C, 89, 99-105.
  • 57. Jones, M. H., & Woodcock, J. T. (1978b). Optimization and control of laboratory sulphidization of oxidized copper ores with an ion selective electrode. Proceedings of the Australasian Institution of Mining and Metallurgy, 266, June 1978 (pp. 11-19). .
  • 58. Jones, M. H., & Woodcock, J. T. (1979a). Use of a sulphide ion-selective electrode in the sulphidization and flotation of oxidized copper ores: Advances in Flotation. Proceedings of the first Latin-American Congress on Flotation: 4, (pp. 221-243). University of Concepcion.
  • 59. Jones, M. H., & Woodcock, J. T. (1979b). Control of laboratory sulphidization with a sulphide ion-selective electrode before flotation of oxidized lead-zinc-silver dump materials. International Journal of Mineral Processing, 6, 17-30. https://doi.org/10. 1016/0301-7516(79)90029-2.
  • 60. Julihn, C. E. (1928). Summarized data of copper production, Economic Paper 1, 7, Washington: U.S. Department of Commerce, Common Metals Division, Economic Branch, Bureau of Mines, United States Government Printing Office27-32 13.
  • 61. Kabuya, K. (2015). Survey of the floatability of a blend of the ores from the deposit of Kilamusembo and tailings from the Mutoshi washery, An interim report of the research project carried out by the Chemical and Metallurgical Processing Unit of the Higher School of Applied Techniques in Lubumbashi.
  • 62. Kalenga, J. N. (2014). Production of Nonferrous Metals in the Katanga Region of the Democratic Republic of Congo: 1906-2012. International Journal of Economics and Management Sciences, 3(2), 1-7. https://doi.org/10.4172/2162-6359.1000181.
  • 63. Kampunzu, A. B., Cailteux, J. L. H., Kamona, A. F., Intiomale, M. M., & Melcher, F. (2009). Sediment hosted Zn-Pb-Cu deposits in the Central African Copperbelt. Ore Geology Reviews, 35(3), 263-297. https://doi.org/10.1016/j.oregeorev.2009.02.003.
  • 64. Kanda, N. J. M. (2013). Etude de la Flottabilité des Minerais Oxidés du Gisement de Kamfundwa (RDC) (PhD thesis). Engineering Sciences. Belgium: University of Liege.
  • 65. Kaniki, A. T., & Tumba, K. (2019). Management of mineral processing tailings and metallurgical slags of the Congolese Copperbelt: Environmental stakes and perspectives. Journal of Cleaner Production, 210, 1406-1413. https://doi.org/10.1016/j.jclepro.2018.11.131.
  • 66. Katwika, N. C. (2012). Contribution à l’amélioration des performances du Nouveau Concentrateur de Kipushi en RDC, Application de la concentration gravimétrique (PhD Thesis in Engineering Sciences). Belgium: University of Mons4-16 23-37.
  • 67. Kelly, V., Bennett, J., & Smith, D. J. F. (2012). Kipushi Zinc Mine Project - DRC,NI 43-101 Technical Report (Revision 2) Prepared by IMC Group Consulting Limited for Ivanplats Limited.
  • 68. Kilumba, M. F. (2010). Overview on the Kakanda Concentrator - Boss Mining and comparison of outputs from Agitair and Ultimate flotation machines in view improvement of the process performances. An interim project research carried out. Chemistry Department, faculty of Sciences, University of Lubumbashi 17-30.
  • 69. Kime, M. B. (2017). Structural Equation Modelling the leaching of oxidised copper-cobalt ore in HCl aqueous solution. Canadian Institute of Mining Metallurgy and Petroleum Journal, 8(1), 7-18.
  • 70. Kime, M. B., & Makgoale, D. (2016). Characterization of copper-cobalt ores and quantification of Cu2+, Co2+, Co3+, and Fe3+ in aqueous leachates using UV-visible spectrophotometry. Chemical Engineering Communications, 203(12), 1648-1655. https://doi.org/10.1080/00986445.2016.1230102.
  • 71. Kime, M. B., Kanowa, E. K., Mulaba-Bafubiandi, A. F., & Diyambi, S. N. (2016). Value Recovery from Mukondo Mine Low-Grade Cobalt Ore by Heap Leaching and Solvent Extraction. A paper presented at the Hydrometallurgy Conference 2016: Sustainable Hydrometallurgical Extraction of Metals, Cape Town (pp. 1-3). . https://doi.org/10.13140/rg.2.2.35313.28001.
  • 72. Kime, M. B., Ntambwe, J., & Mwamba, J. (2015). Laboratory evaluation of the flotation response of a copper cobalt oxide ore to gasoil-rinkalore mixtures. World Academy of Science, Engineering and Technology. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(3), 252-258. https://doi.org/10.5281/zenodo.1106979.
  • 73. Klimpel, R.R., Leonard, D.E., Hansen, R.D., & Fee, B.S. (1991). Depression of the flotation of silica or siliceous gangue in mineral flotation, United State Patent N 5,057,209 , Oct. 15, 1991.
  • 74. Kongolo, K., Kipoka, M., Minanga, K., & Mpoyo, M. (2003). Improving the efficiency of oxide copper-cobalt ores flotation by combination of sulphidisers. Minerals Engineering, 16(10), 1023-1026. https://doi.org/10.1016/S0892-6875(03)00263-2.
  • 75. Könighofer, T., Archer, S. J., & Bradford, L. (2009). A cobalt solvent extraction investigation in Africa’s Copper Belt. Hydrometallurgy Conference 2009, 24-26th, February, Gauteng, South Africa (pp. 329-340). The Southern African Institute of Mining and Metallurgy.
  • 76. Kordosky, G. (2007). The Copperbelt of Africa - A renaissance in copper hydrometallurgy. Proceedings of the 4th International Copper Hydrometallurgy Workshop, May 16-18, 2007, Vina del Mar, Chile (pp. 1-54). .
  • 77. Kugeria, P. M., Mwangi, I., Wachira, J., & Njoroge, P. (2018). Copper extraction by wet chemical method. Journal of Sustainable Mining, 17(4), 202-208. https://doi.org/10.1016/j.jsm.2018.07.003.
  • 78. Lee, J. S., Nagaraj, D. R., & Coe, J. E. (1998). Practical aspects of oxide copper recovery with alkyl hydroxamates. Minerals Engineering, 11(10), 929-939. https://doi.org/10.1016/S0892-6875(98)00080-6.
  • 79. Lefebvre, J. J. (1976). Minéralisation cupro-cobaltifère et zincifère d'aspect épigénetique à Kabolela, Shaba, Zaire. Annales de la Société Géologique de Belgique, 99, 315-335.
  • 80. Leppinen, J., & Mielczarski, J. A. (1986). Spectroscopic study of the adsorption of thiol collectors on lead sulphide in the presence of sodium sulphide. International Journal of Mineral Processing, 18(1-2), 3-20. https://doi.org/10.1016/0301-7516(86)90003-7.
  • 81. Loshi, K. (2012). Étude rétrospective de la pollution due au stockage des tailings de la concentration des minerais du cuivre par séparation en milieu dense (DMS). A research report of project initiated by the Mining Metal Group Kinsevere (Department of Environment) and conducted in collaboration with the Chemistry Department. Faculty of the Sciences, University of Lubumbashi 21-44.
  • 82. Lutandula, M. S., & Maloba, B. (2013). Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidized ores. Journal of Environmental Chemical Engineering, 4(1/4), 1085-1090. https://doi.org/10.1016/j.jece.2013.08.025.
  • 83. Lydall, M. I., & Auchterlonie, A. (2011). The Democratic Republic of Congo and Zambia: A Growing global ‘hotspot’ for copper-cobalt mineral investment and exploration. the 6th Southern Africa Base Metals Conference, Phalaborwa, 18-21 July 2011, Johannesburg (pp. 25-38). The Southern African Institute of Mining and Metallurgy.
  • 84. Malghan, S. S. (1986). Role of sodium sulphide in the flotation of oxidized copper, lead and zinc ores. Minerals and Metallurgical Processing, 3(3), 158-163. https://doi.org/10.1007/BF03402654.
  • 85. Mambwe, P., Kipata, M. L., Chabu, M., Muchez, Ph., Lubala, R. T., Jebrak, M., & Delvaux, D. (2017a). Sedimentology of the Shangoluwe breccias and timing of the Cu mineralization (Katanga Supergroup, D. R. of Congo). Journal of African Earth Sciences, 132, 1-15. https://doi.org/10.1016/j.jafrearsci.2017.04.017.
  • 86. Mambwe, P., Milan, L., Batumike, J., Lavoie, S., Jebrak, M., Kipata, L., Chabu, M., Mulongo, S., Lubala, R. T., Delvaux, D., & Muchez, Ph. (2017b). Lithology, petrography and Cu mineralisation of the Neoproterozoic glacial Mwale Formation at the Shanika syncline (TenkeFungurume, Congo Copperbelt; Democratic Republic of Congo). Journal of African Earth Sciences, 129, 898-909. https://doi.org/10.1016/j. jafrearsci.2017.02.021.
  • 87. Mambwe, P., Muchez, Ph., Lavoie, S., Kipata, L., & Dewaele, S. (2019). Evidence for late Lufilianorogenic mineralizing fluids at the Kamalondo Cu-Co deposit (TenkeFungurume, Democratic Republic of the Congo). A spaper accepted for the 15th Biennial Meeting of the Society for Geology Applied to Mineral Deposits, 27-30 August 2019. Glasgow, United Kingdom: University of Glasgow.
  • 88. Mapeta, M. (2013). Perturbations from the talcaeous ores on the decantation of the postleaching pulp achieved at the copper hydrometallurgical plant of Mutanda Mining- Glencore, An interim report of a research project. Chemistry Department, Faculty of the Sciences, University of Lubumbashi, DRC31-64.
  • 89. Marinakis, K. I., & Kelsall, G. H. (1987). The surface chemical properties of scheelite (CaWO4), The scheelite/water interface and CaWO4 solubility. Colloids and Surfaces, 25(2-4), 369-385. https://doi.org/10.1016/0166-6622(87)80315-3.
  • 90. Mawson West Ltd (2011). The Dikulushi Mine and Kapulo project, Annual information form for the year ended June 30, 2011. 13, 30-32 22-24.
  • 91. Mawson West Ltd (2015). ber 31, 2014. Annual information form for the year ended Decem1-56.
  • 92. Mbuya, B. I., Kime, M. B., & Tshimombo, A. M. D. (2017). Comparative study of approaches based on the Taguchi and ANOVA for optimising the leaching of copper-- cobalt flotation tailings. Chemical Engineering Communications, 204(4), 512-521. https://doi.org/10.1080/00986445.2017.1278588.
  • 93. Meditz, S. W., & Merrill, T. (Eds.). (1994). Zaire, a country study(4th Edition). Washington DC: US Federal Research Division, Library of Congress, Area Book Series.
  • 94. Mthembu - Salter, G. (2011). Indian Mining Companies in the Democratic Republic of Congo, Emerging Powers and Global Challenges Programme, funded by the Swedish International Development Cooperation Agency and the Danish International Development Agency, facilitated through the Danish Embassy in Pretoria, SAIIA Policy Briefing, 3, 1-4. Accessible via: https://www.africaportal.org//.
  • 95. Muchez, P., Vanderhaeghen, P., Desouky, H., Schneider, J., Boyce, A., Dewaele, S., & Cailteux, J. (2008). Anhydrite pseudomorphs and the origin of stratiform Cu-Co ores in the Katangan Copperbelt (Democratic Republic of Congo). Mineralium Deposita, 43(5), 575-589. https://doi.org/10.1007/s00126-008-0183-5.
  • 96. Muchez, Ph., Andre-Mayer, A. S., El Desouky, A. H., & Reisberg, L. (2015). Diagenetic origin of the stratiform Cu-Co deposit at Kamoto in the Central African Copperbelt. Mineralium Deposita, 50(4), 437-447. https://doi.org/10.1007/s00126-015-0582-3.
  • 97. Mulaba-Bafubiandi, A. F., & Bell, D. T. (2005). Some aspects of laboratory flotation of Co- Cu minerals from mixed oxide ores. Proceedings of the Third Southern African Conference on Base Metals, 26-29th June, Kitwe, Zambia (pp. 191-199). The Southern African Institute of Mining and Metallurgy.
  • 98. Mwema, M., & Mpoyo, M. (2001). Improvements of cobalt recovery in flotation of cuprocobaltiferous ore at Gecamines. Proceedings of the Conference on Copper, Cobalt, Nickel and Zinc Recovery, 27th June, Victoria Falls, Zimbabwe (pp. 1-9). The Southern African Institute of Mining and Metallurgy.
  • 99. N’Sakila, M. G. (2008). Commentary: The Chinese presence in Lubumbashi, DRC, (pp. 7- 10). In H. Herman, J. Janson, & M. MacDonal (Eds.). China and the Democratic Republic of Congo: Partners in Development? The China Monitor 34, October 2008 South Africa: a Publication of the Centre for Chinese Studies, Faculty of Arts, University of Stellenbosch 2008.
  • 100. Nagaraj, D. R. (1997). Development of new flotation chemicals. Transactions of the Indian Institute of Metallurgy, 50, 355-363.
  • 101. Nambia, M. D. (2015). Minimization of perturbations due to siliceous matters on the efficiency of solvent extraction during the hydrometallurgical processing of the copper ores: Removal of siliceous matters by means of activated coal, An interim report of a project research conducted at the Minerals and Metal Group Kinsevere in collaboration with Chemical Department (Unpublished). Faculty of the Sciences, University of Lubumbashi.
  • 102. Napier-Munn, T. J., Kojovic, T., Scott, I. A., Shi, F., Masinja, J. H., & Baguley, P. J. (1995). Some causes of medium loss in dense medium plants. Minerals Engineering, 8(6), 659-678. https://doi.org/10.1016/0892-6875(95)00028-O.
  • 103. Ndalamo, J. (2008). Aqueous behaviour of cobalt in the presence of copper, iron and sulphur dioxide with and without microwave processing (MSc Thesis). Chemistry. Faculty of Science, University of Johannesburg.
  • 104. Newell, A. J. H., & Bradshaw, D. J. (2007). The development of a sulfidisation technique to restore the flotation of oxidised pentlandite. Minerals Engineering, 20(10), 1039-1046. https://doi.org/10.1016/j.mineng.2007.04.012.
  • 105. Ngongo, K. (1975). Similarity Between the uraniferous deposits (Shinkolobwe type) and the cupriferous deposits (Kamoto type) at Shaba, Zaire. Annales de la Société Géologique de Belgique, 98(2), 449-462.
  • 106. Nkuna, V. L., Naidoo, T., & Amos, S. R. (2016). Ivanhoe Mines’ giant Kamoa copper discovery in the DRC —a metallurgical perspective. Journal of the Southern African Institute of Mining and Metallurgy, 116, 547-552. https://doi.org/10.17159/2411-9717/2016/v116n6a9.
  • 107. Ntakamutshi, P. T., Kime, M. B., Mwema, M. E., & Ngenda, B. R. (2017). Agitation and column leaching studies of oxidised copper-cobalt ores under reducing conditions. Minerals Engineering Journal, 111, 47-54. https://doi.org/10.1016/j.mineng.2017.06. 001.
  • 108. Nujoma, S. (2009). Copper - its geology and economic impact on development in Namibia, Zambia and the Democratic Republic of the Congo (MSc Thesis). Geology. University of Namibia.
  • 109. Omarov, B. N., Bekturganov, N. S., Yusupov, T. S., & Antonov, V. A. (1994). Role of iron in sulfidization of oxidized copper minerals under grinding conditions. Russian Journal of Mining Science, 30(4), 409-411. https://doi.org/10.1007/BF02048188.
  • 110. Phetla, T. P., & Muzenda, E. (2010). A multistage sulphidisation flotation procedure for a low-grade malachite copper ore, World Academy of Science. Engineering Technology, 70, 255-261.
  • 111. Quast, K. B. (2000). A review of hematite flotation using 12-carbon chain collectors. Minerals, 13(13), 1361-1376. https://doi.org/10.1016/S0892-6875(00)00119-9.
  • 112. Rao, S. R., & Finch, J. A. (2003). Base metal oxide flotation using long chain xanthates. International Journal of Minerals Processing, 69(1-4), 251-258. https://doi.org/10.1016/S0301-7516(02)00130-8.
  • 113. Ren, J., Lu, S., Song, S., & Niu, J. (1997). A new collector for rare earth mineral flotation. Minerals Engineering, 10(12), 1395-1404. https://doi.org/10.1016/S0892-6875(97) 00129-5.
  • 114. Rio Echevarria, I. M. (2007). Applications of Surface Ligand Design to Flotation (PhD thesis) The University of Edinburgh.
  • 115. Saad, L., Parmentier, I., Colinet, G., Malaisse, F., Faucon, M.-P., Meerts, P., & Mahy, G. (2013). Investigating the Vegetation-Soil Relationships on the Copper-Cobalt Rock Outcrops of Katanga (D. R. Congo), an Essential Step in a Biodiversity Conservation Plan, Restoration Ecology. The Journal of Society for Ecological Restoration, 20(3), 405-415. https://doi.org/10.1111/j.1526-100X.2011.00786.x.
  • 116. Samsonova, N. S., Gutsalyuk, T. G., & Aitalieva, S. G. (1974). Flotation of azurite. Soviet Mining Science, 10(1), 105-108. https://doi.org/10.1007/BF02501618.
  • 117. Selley, D., Broughton, D., Scott, R., Hitzman, M., Bull, S. W., Large, R. R., McGoldrick, P., Croaker, M., Pollington, N., & Barra, F. (2005). A new look at the geology of the Zambian Copperbelt, Society of Economic Geologists. Economic Geology 100th Anniversary: 965-1000.
  • 118. Shen, W. Z., Fornasiero, D., & Ralston, J. (1998). Effect of Collectors, Conditioning pH and Gases in the Separation of Sphalerite from Pyrite. Minerals Engineering, 11(2), 145-158. https://doi.org/10.1016/S0892-6875(97)00147-7.
  • 119. Shen, W. Z., Fornasiero, D., & Ralston, J. (2001). Flotation of sphalerite and pyrite in the presence of sodium sulfite. International Journal of Mineral Processing, 63(1), 17-28. https://doi.org/10.1016/S0301-7516(00)00067-3.
  • 120. Shengo, L. M. (2008). Improvement of flotation effluents management at the New Concentrator in Kipushi, A preliminary report of investigations carried out by the Inorganic Unit. Chemical Department, Faculty of the Sciences, University of Lubumbashi.
  • 121. Shengo, L. M. (2013). Etude du recyclage de l’eau residuaire dans la flottation des minerais oxydes du gisement de Luiswishi (PhD Thesis) Engineering Sciences. University of Liege.
  • 122. Shengo, L. M., Gaydardzhiev, S., & Kalenga, N. M. (2014). Assessment of water quality effects on flotation of copper-cobalt oxide ore. Minerals Engineering, 65, 145-148. https://doi.org/10.1016/j.mineng.2014.06.005.
  • 123. Shengo, L. M., Kitungwa, K. B., Mutiti, W. N. C., & Mulumba, M. J. L. (2017). Recovery of Copper Metal through Reporocessing of Residues from a Hydrmetallurgical plant. Asian Journal of Engineering and Technology, 5(1), 1-10.
  • 124. Shungu, T., Vermaut, N., & Ferron, C. J. (1988). Recent trends in the Gecamines copper cobalt flotation plants. Mining. Metallurgy and Exploration, 5(3), 163-170. https://doi.org/10.1007/BF03402505.
  • 125. Sreenivas, T., & Padmanabhan, N. P. H. (2002). Surface chemistry and flotation of cassiterite with alkyl hydroxamates. Colloids and Surfaces A-Physicochemical and Engineering aspects, 205(1-2), 47-59. https://doi.org/10.1016/S0927-7757(01) 01146-3.
  • 126. Takeuchi, K., Strongman, J. E., Maeda, S., & Tan, C. (1986). The World Copper Industry: Its Changing Structure and Future Prospects. Washington, D.C: World Bank Staff Commodity Working Papers N°15.
  • 127. Theron, S. J. (2013). The origin of the Central African Copperbelt: in a nutshell. Proceedings of the Base Metals Conference 2013, 2-4th September, Mpumalanga (pp. 21- 36). The Southern African Institute of Mining and Metallurgy.
  • 128. Umpula, E., & Amisi, J.-C. (2012). Transparence des revenus miniers en RDC : Cas de la province du Katanga. Lubumbashi: Action Contre l’Impunite pour les Droits Humains (ACIDH)14-29. Accessed on July the 27th 2019 and available at https://www.business-humanrights.org//.
  • 129. Valenta, M., & Mulcahy, B. (2016). Development of a geometallurgical model for a copper concentrator. Journal of the Southern African Institute of Mining and Metallurgy, 116(6), 539-545. https://doi.org/10.17159/2411-9717/2016/v116n6a8.
  • 130. Verlinden, P., & Cuypers, L. (1956). Union Miničre du Haut Katanga 1906-1956, Evolution des techniques et activités sociales. Bruxelles: Edite par L. Cuypers, Etablissements Generaux d’Imprimerie de Bruxelles (VROMANT S.A.)89-148.
  • 131. Wang, X., & Forssberg, E. (1989). A study of the natural and induced hydrophobicity of some sulphide minerals by collectorless flotation. In G. S. Dobby, & S. R. Rao (Eds.). Processing of Complex Ores (pp. 3-19). Elmsford: New York:Pergamon. https://doi.org/10.1016/B978-0-08-037283-9.50006-8.
  • 132. Wang, X., & Forssberg, E. (1996). The solution electrochemistry of the sulphide - xanthate -cyanide systems in sulfide mineral flotation. Minerals Engineering, 9(5), 527-546. https://doi.org/10.1016/0892-6875(96)00041-6.
  • 133. Wang, X., Forssberg, E., & Bolin, N. (1989). Pyrrhotite Activation by Cu(II) in Acidic to Neutral pH Media. Scandinavian Journal of Metallurgy, 18, 271-279.
  • 134. Warries, H., Le Brun, S., Johns, C., Hayward, P., Massey, A., & Orr, C. (2011). Kapulo Copper Project, DRC, National Instrument 43-101, A technical Report. Coffey Mining Pty Ltd50-53. Accessed on July the 27th 2019 and available at: https://secure.kaiserresearch.com//.
  • 135. Warwick, J. (2014). Southern Africa’s Top Mining Projects, Kipoi Copper Project (DRC). In A. Tassel (Vol. Ed.), Crown Publications cc. Modern Mining: 10, (pp. 62-65). 1.
  • 136. Wills, B. A., & Napier-Munn, T. (2006). Mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery (7th Edition). Oxford: Elsevier Science and Technology Books.
  • 137. Wimberley, F., Onley, P., Van der Schyff, W., Cunningham, E., Eckstein, S., Lotheringen, J., Nieuwenhuys, J., & Johnstone, K. (2011). Mineral report’s expert: Kamoto Copper Company (KCC), Report Number 12971-10169-2, Golder Associates Africa (Pty). GAA Library87-111. Accessed on July the 27th, 2019 and available at: http://www.katangamining.com//.
  • 138. Woollacott, L. C., & Eric, R. H. (1994). Mineral and Metal Extraction: An Overview. Johannesburg, South Africa: Southern African Institute for Mining and Metallurgy.
  • 139. Wright, A. J., & Prosser, A. P. (1965). Study of reactions and flotation of chrysocolla with alkali-metal xanthates and sulphides. Transactions Institution of Mining and Metallurgy, 74, 259-279.
  • 140. Xu, D., & Aplan, F. (1994). Joint use of Metal Ion Hydroxyl Complexes and Organic polymers to Depress Pyrite and Ash during Coal Flotation. Minerals and Metallurgical Processing, 11(4), 223-230. https://doi.org/10.1007/BF03403068.
  • 141. Yager, T. R. (2012). The Mineral Industry of Congo (Kinshasa): In USGS (United States Geological Survey): US Geological Survey Minerals Yearbook 2010. 11.1-11.9.
  • 142. Yager, T. R. (2013). The Mineral Industry of Congo (Kinshasa): In USGS (United States Geological Survey): US Geological Survey Minerals Yearbook 2011. 11.1-11.9.
  • 143. Yager, T. R. (2016). The Mineral Industry of Congo (Kinshasa): In USGS (United States Geological Survey): US Geological Survey Minerals Yearbook 2013. 13.1-13.10.
  • 144. Zhan-fang, C., Hong, Z., Guang-yi, L., & Shu-juan, Z. (2009). Techniques of copper recovery from Mexican copper oxide ore. Mining Science and Technology, 19(1), 45-48. https://doi.org/10.1016/S1674-5264(09)60009-0.
  • 145. Zhong, H., Huang, Z., Zhao, G., Wang, S., Liu, G., & Cao, Z. (2015). The collecting performance and interaction mechanism of sodium diisobutyldithiophosphinate in sulfide minerals flotation. Journal of Materials Research and Technology, 4(2), 151-161. https://doi.org/10.1016/j.jmrt.2014.12.003.
  • 146. Zhou, R., & Chander, S. (1993). Kinetics of sulphidization of malachite in hydrosulphide and tetrasulphide solution. International Journal of Minerals Processing, 37(3-4), 257-272.
  • 147. Zientek, M. L., Bliss, J. D., Broughton, D. W., Christie, Michael, Denning, P. D., Hayes, T. S., Hitzman, M. W., Horton, J. D., Frost-Killian, S., Jack, D. J., Master, S., Parks, H. L., Taylor, C. D., Wilson, A. B., Wintzer, N. E., & Woodhead, J. (2014). Sediment-Hosted stratabound copper assessment of the Neoproterozoic Roan Group, Central African Copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia. U.S. Geological Survey Scientific Investigations Report 2010-5090-T162. p. and Spatial Data http://doi.org/10.3133/sir20110509T.
  • 148. Ziyadanogullari, R., & Aydin, F. (2005). A new application for flotation of oxidized copper ore. Journal of Mineral Materials Characterization Engineering, 4(2), 67-73.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68b39ed8-7e26-43c5-bdad-b52f637f964f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.