PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Decomposition Pathways for Aqueous Hydroxylammonium Nitrate Solutions: a DFT Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxylammmonium nitrate (hydroxylamine nitrate, HAN) is one of the most promising candidates as a replacement for commonly used liquid mono-propellants such as hydrazine. The reaction pathways involved in the initial and the catalytic decomposition of HAN in aqueous solution were determined using quantum chemistry calculations incorporating solvent effects. Optimized structures were obtained for the reactants, products and transition states at the ωB97XD/6-311++G(d,p)/SCRF = (solvent = water) level of theory and the total electron energies of these structures were calculated at the CBS-QB3 level of theory. In the initial decomposition, the ion-neutral NH3OH+-HNO3 reaction, the neutral-neutral NH3O-HNO3 reaction and the HNO3 self-decomposition pathways were all found to have reasonable energy barriers, with values of 91.7 kJ/mol, 88.7 kJ/mol and 89.8 kJ/mol, respectively. The overall reaction resulting from any of these pathways can be written as: HAN → HONO + HNO + H2O. The ionic reaction is dominant during the initial decomposition of HAN in aqueous solution because NH3OH+ and NO3– are the major species in such solutions. We also developed six catalytic mechanisms and each of these schemes provided the same global reaction: NH2OH + HONO → N2O + 2H2O. The t-ONONO2 oxidizing scheme is the most plausible based on the energy barrier results.
Rocznik
Strony
888--916
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama (KANAGAWA), Japan
autor
  • Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama (KANAGAWA), Japan
autor
  • Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama (KANAGAWA), Japan
Bibliografia
  • [1] Gohardani, A. S.; Stanojev, J.; Demairé, A.; Anflo, K.; Persson, M.; Wingborg, N.; Nilsson, C. Green Space Propulsion: Opportunities and Prospects. Progress in Aerospace Sciences 2014, 71: 128-149.
  • [2] Fukuchi, A. B.; Nagase, S.; Maruizumi, H.; Ayabe, M. HAN/HN-Based Monopropellant Thrusters. IHI Engineering Review 2010, 43: 22-28.
  • [3] Katsumi, T.; Kodama, H.; Matsuo, T.; Ogawa, H.; Tsuboi, N.; Hori, K. Combustion Characteristics of a Hydroxylammonium Nitrate Based Liquid Propellant. Combustion Mechanism and Application to Thrusters. Combust. Explos. Shock Waves (Engl. Transl.) 2009, 45: 442-453.
  • [4] Kondrikov, B. N.; Annikov, V.; Egorshev, Y.; deLuca, L. T. Burning of Hydroxylammonium Nitrate. Combust. Explos. Shock Waves (Engl. Transl.) 2000, 36: 135-145.
  • [5] Katsumi, T.; Kodama, H.; Ogawa, H.; Tsuboi, N.; Hori, K. Combustion Characteristics of HAN-based Liquid Propellant. Sci. Tech. Energ. Mater. 2009, 70: 27-32.
  • [6] Katsumi, T.; Inoue, T.; Nakatsuka, J.; Hasegawa, K.; Kobayashi, K.; Sawai, S.; Hori, K. HAN-Based Green Propellant, Application, and Its Combustion Mechanism. Combust, Explos, Shock Waves (Engl. Transl.) 2012, 48: 536-543.
  • [7] Pan, Y.; Yu, Y.; Zhou, Y.; Lu, X. Measurement and Analysis of the Burning Rate of HAN-based Liquid Propellants. Propellants Explos. Pyrotech. 2012, 37: 439-444.
  • [8] Lee, H.; Litzinger, T. A. Thermal Decomposition of HAN-Based Liquid Propellants. Combust. Flame 2001, 127: 2205-2222.
  • [9] Courthéoux, L.; Amariei, D.; Rossignol, S.; Kappenstein, C. Thermal and Catalytic Decomposition of HNF and HAN Liquid Ionic as Propellants. Applied Catalysis B: Environmental 2006, 62: 217-225.
  • [10] Amrousse, R.; Katsumi, T.; Bachar, A.; Brahmi, R.; Bensitel, M.; Hori, K. Chemical Engineering Study for Hydroxylammonium Nitrate Monopropellant Decomposition over Monolith and Grain Metal-based Catalysts. Reac. Kinet. Mech. Cat. 2013, 111: 71-88.
  • [11] Chang, Y. P.; Kuo, K. K. Assessment of Combustion Characteristics and Mechanisms of a HAN-Based Liquid Monopropellant. Proc. AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exibit (AIAA Paper No. 2001-3272), Salt Lake City, USA, July 8-11, 2001.
  • [12] Harlow, D. G.; Felt, R. E.; Agnew, S.; Barney, G. S.; McKibben, J. M.; Garber, R.; Lewis, M. Technical Report on Hydroxylamine Nitrate. U. S. Department of Energy, 1998.
  • [13] Wei, C.; Rogers, W. J.; Mannan, M. S. Thermal Decomposition Hazard Evaluation of Hydroxylamine Nitrate. J. Hazard. Mater 2006, 130: 163-168.
  • [14] Liu, L.; Wei, C.; Guo, Y.; Rogers, W. J.; Mannan, M. S. Hydroxylamine Nitrate Self-catalytic Kinetics Study with Adiabatic Calorimetry. J. Hazard. Mater 2009, 162: 1217-1222.
  • [15] Khare, P.; Yang, V.; Meng, H.; Risha, G. A.; Yetter, R. A. Thermal and Electrolytic Decomposition and Ignition of HAN-Water Solution. Combust. Sci. Technol. 2015, 187: 1065-1078.
  • [16] Khare, P. Decomposition and Ignition of HAN-based Monopropellants by Electrolysis. M.S. Thesis, Pennsylvania State University, 2009.
  • [17] Thakre, P.; Duan, Y.; Yang, V. Modeling of Ammonium Dinitramide (ADN) Monopropellant Combustion with Coupled Condensed Phase and Gas Phase Kinetics. Combust. Flame 2014, 161: 347-362.
  • [18] Lee, H.; Litzinger, T. A. Chemical Kinetic Study of HAN Decomposition. Combust. Flame 2003, 135: 151-169.
  • [19] Oxley, J. C.; Brower, K. R. Thermal Decomposition of Hydroxylamine Nitrate. Proc. SPIE 0872, Propulsion, 63, May 9, 1988.
  • [20] Klein, N. Ignition and Combustion of the HAN-based Liquid Propellants. Proc. 27th JANNAF Combustion Subcommittee Meeting, Vol. 1. CPIA Publication, November 5-9, Cheyenne, USA 1990, 443-450.
  • [21] Chai, J. D.; Head-Gordon, M. Long-range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10: 6615-6620.
  • [22] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09. Revision D.01; Gaussian, Inc., Wallingford CT. 2010.
  • [23] Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys. 1999, 110: 2822-2827.
  • [24] Cossi, M.; Scalman, G.; Rega, N.; Barone, V. New Developments in the Polarizable Continuum Model for Quantum Mechanical and Classical Calculations on Molecules in Solution. J. Chem. Phys. 2002, 117: 43-54.
  • [25] de Lima, G. F.; Piego, J. R.; Duarte, H. A. Stability of Hydroxylamine Isomers in Aqueous Solution: Ab initio Study Using Continuum, Cluster-continuum and Shells Theory of Solvation. Chem. Phys. Lett. 2011, 518: 61-64.
  • [26] Fernádez, M. I.; Canle, M.; García, M. V.; Santaballa, J. A. A Theoretical Analysis of the Acid-base Equilibria of Hydroxylamine in Aqueous Solution. Chem. Phys. Lett. 2010, 490: 159-164.
  • [27] Wang, Q., Wei, C.; Pérez, L. M.; Rogers, W. J.; Hall, H. B.; Mannan, M. S. Thermal Decomposition Pathways of Hydroxylamine: Theoretical Investigation on the Initial Steps. J. Phys. Chem. A. 2010, 114: 9262-9269.
  • [28] Wang, Q.; Mannan, M. S. Prediction of Thermochemical Properties for Gaseous Ammonia Oxide. J. Chem. Eng. Data 2010, 55: 5128-5132.
  • [29] Alecu, I. M.; Marshall, M. Computational Study of the Thermochemistry of N2O5 and the Kinetics of the Reaction N2O5+H2O→2HNO3. J. Phys. Chem. A 2014, 118: 11405-11416.
  • [30] Gowland, R. J.; Stedman, G. Kinetic and Product Studies on the Decomposition of Hydroxylamine in Nitric Acid. J. Inorg. Nucl. Chem. 1981, 43: 2859-2862.
  • [31] Schoppelrei, J. W.; Kieke, M. L.; Brill, T. B. Spectroscopy of Hydrothermal Reactions. 2. Reactions and Kinetic Parameters of [NH2OH]NO3 and Equilibria of (NH4)2CO3 Determined with a Flow Cell and FT Raman Spectroscopy. J. Phys. Chem. 1996, 100: 7463-7470.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68b2bce8-47c7-4c2b-b703-3d93c7098e80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.