PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of an effective height system in irregular topographic environments: a case study in Kalush–Holyn deposit area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relevance of this work lies in the need to improve height monitoring methods for neotectonics processes in areas with irregular topographic environments and to develop technological requirements to ensure the necessary accuracy and reliability of the results. The purpose of this study is to control subsidence in mining fields within technogenically stressed areas influenced by the Kalush–Holyn potash deposit and to develop a comprehensive methodology for monitoring the network of observation stations. The study includes highprecision measurements of ellipsoidal heights using the Global Navigation Satellite System (GNSS), determination of orthometric height differences based on high-precision geometric leveling, and application of orthometric corrections. At the junction points of the leveling networks, known data on the geological structure of underground layers, the distribution of earth masses, and the measured value of gravity have enabled the determination of orthometric corrections. The methodology employed in the study accounts for changes in the shape of the level surface on technogenic polygons and the heterogeneity of the gravity field. Adherence to the developed technological requirements allows for additional control of monitoring results and ensures an accuracy in height difference determination of no less than 1/1000000. The results of the study demonstrate that independent measurements of orthometric and ellipsoidal height differences facilitate a more precise investigation of geodynamic processes in technogenically stressed areas by calculating vertical line deviations. Thus, the proposed approach to monitoring neotectonics processes can be used to develop effective strategies for monitoring and managing environmental risks associated with geological hazards.
Rocznik
Strony
art. no. e63, 2025
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Yuriy Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
autor
  • Ivano–Frankivsk National Technical University of Oil and Gas, Ivano–Frankivsk, Ukraine
Bibliografia
  • 1. Ahlgren, K., Van Westrum, D., and Shaw, B. (2024). Moving mountains: reevaluating the elevations of Colorado mountain summits using modern geodetic techniques. J. Geod., 98(4). DOI: 10.1007/s00190-024-01831-8.
  • 2. Bagriy, S. (2011). About necessity of the complexing geophysical methods in natural and industrial karst investigation (the example of salt deposits in Precarpathians). Geodyn., 2(2), 24–26. http://dspace.nbuv.gov.ua/bitstream/handle/123456789/59440/07-Bagrij.pdf?sequence$=$1.
  • 3. Bagriy, S., Kuzmenko, E., Zhuravel, A. et al. (2013). GIS-Model of Dombrovsky career of Kalush mining Areas. Proceedings 12th EAGE International Conference on Geoinformatics – Theoretical and Applied Aspects. DOI: 10.3997/2214-4609.20142454.
  • 4. Bagriy S., Kuzmenko E., and Anikeyev S. (2016). Degree assessment of the surface subsidence at the mine fields of Kalush mining region according high precision gravimetry. The World Science Papers Collection: Scientific World, Ivanovo, 1(42), 40-48.
  • 5. Bagriy, S., Davybida, L., and Kuzmenko, E. (2017). Spatial modeling and prediction of environmental situation when filling Dombrowski quarry: GIS approach. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 106–111. Retrieved August 19, 2024, from http://nbuv.gov.ua/UJRN/Nvngu_2017_2_18.
  • 6. Burak, K., Kuzmenko, E., Bahriy, S. et al. (2014). Features of geodetic monitoring and forecasting of geotechnogenic dynamics in potash mine fields deposits. Bull. Geod. Cartogr., 5, 12–18. Retrieved August 20, 2024, from http://nbuv.gov.ua/UJRN/vgtk_2014_5_9.
  • 7. Burak, E˛., and Yarosh, K. (2021). On prospects of astronomo-geodesic leveling for coordinate support of geodynamic and technogenic polygons. Geod. Cartogr. Aerial Photogr., 93, 85–93. DOI:10.23939/istcgcap2021.93.085.
  • 8. Burak, E˛. (2022). On the accuracy of gravimetric provision of astronomogeometric leveling on geodynamic and technogenic polygons. Geod. Cartogr. Aerial Photogr., 95, 39–52. DOI: 10.23939/istcgcap2022.95.039.
  • 9. Chaikovska, K. (2023). Potash in Ukraine: mining prospects. European Business Association. European Business Association. Retrieved June 28, 2024, from https://eba.com.ua/kalijni-soli-v-ukrayini-perspektyvy-vydobuvannya/.
  • 10. Czarnecki, K. (2010). Geodezja wspolczesna. Katowice, Wydawnictwo Gall, 487.
  • 11. Deshchytsya, S., Pidvirny, O., Romanyuk, O. et al. (2016). Evaluation of the state of the ecologically problematic mining and industrial objects in Kalush region by electromagnetic methods and their monitoring. Science and Innovation, 12(5), 47–59. Retrieved August 21, 2024, from https://scinn.org.ua/sites/default/files/pdf/2016/N5/Deshchytsya.pdf.
  • 12. Dwulit, P., and Golubinka, Y. (2009). Comparative characteristics of determining the quasi-geoid heights of the territory of Ukraine using geoid/quasi-geoid models and the Earth’s gravitational field. Geod. Cartogr. Aerial Photogr., 72, 27–34. Retrieved August 21, 2024, from https://science.lpnu.ua/istcgcap/all-volumes-and-issues/volume-72-2009/comparative-characteristics-determining-quasi-geoid.
  • 13. Helmert, R.F. (2014). Die mathematischen und physikalischen Theorieen der höheren Geodäsie (2nd ed.). Universität Complutense in Madrid.
  • 14. Jaeger, R., Kaminskis, J., Štrauhmanis, J. et al.. (2012). Determination of Quasi-Geoid as Height component of the geodetic infrastructure for GNSS-Positioning services in the Baltic States. Latvian J. Phys. Tech. Sci., 49(3), 5–15. Retrieved August 22, 2024, from https://ortus.rtu.lv/science/en/publications/15780.
  • 15. Kitsoft (2023). On the approval of the list of subsoil areas (mineral deposits) that are of strategic importance for the sustainable development of the economy and defense capability of the state, which will be made available for use through tenders for the conclusion of production sharing agreements. Government Poral. The Only Web Portal of Executive Authorities of Ukraine. Retrieved March 9, 2024, from www.kmu.gov.ua/npas/pro-zatverdzhennia-pereliku-dilianok-nadr-rodovyshch-korysnykhkopalyn-iaki-maiut-stratehichne-t140223.
  • 16. Kurilyak, M. (2016). History of the development of the Carpathian salt mines. Student Scientific Bulletin:Ternopil Volodymyr Hnatiuk National Pedagogical University.
  • 17. Kuzmenko, E., Maksumchuk, V., Bagriy, S. et al. (2018). On the relevance of using a complex combination of NIEMFE and EM methods in forecasting rock deformation. In 17th International Conference on Geoinformatics – Theoretical and Applied Aspects, Geoinformatic, 14–17 May 2018, Kiev, Ukraine. DOI: 10.3997/2214-4609.201801820.
  • 18. Kuzmenko, L., Bagriy, S., Dzoba, U. et al. (2019). Assessment of the rock mas deformations in the influence zone of Khotin mine field of Kalush salt mine (Precarpathian area). Monitoring. DOI:10.3997/2214-4609.201903177.
  • 19. Lysko, B. (2023). The prospects of integrated use of high-precision geometric and GNSS leveling for studying neotectonic processes at geodynamic polygons. Ukraïns’kij Žurnal Prikladnoï Ekonomìki, 8(1), 180–186. DOI: 10.36887/2415-8453-2023-1-26.
  • 20. Maksymchuk, V., Kuznetsova, V., and Verbytskyi, T. (2005). Studies of the modern geodynamics of the Ukrainian Carpathians. In Maksymchuk V., Kuznetsova V., Verbytskyi T. et al. Nauk. dumka.
  • 21. Mordvinov, I., Stasiuk, V., Pakshyn, M. et al. (2019). Geodynamic audit of the western region of Ukraine by Sattelite Radar Means. Investment prospects.
  • 22. Mykolaenko, O., Zhyrnov, P., Sadoviy,Y. et al. (2019). Assessment Engineering Geological Zoning of Kalush City Using ERS Data for Urban Development. Geoinformatics. DOI: 10.3997/2214-4609.201902029.
  • 23. Ogorodova, L. (2006). Higher Geodesy. Part 3. Theoretical geodesy. Geodezkartizdat.
  • 24. Sapuzhak, Y., Shamotko, V., and Kravchenko, A. (1990). Geoelectric Models and Methods Investigations of the structures of the Western Ukraine. Naukova Dumka.
  • 25. Strange, W.E. (1982). An evaluation of orthometric height accuracy using bore hole gravimetry. Bull. Géodésique, 56(4), 300–311. DOI: 10.1007/bf02525730.
  • 26. Vignal, J., and O. Simonsen (1962). Identit~des corrections de pesanteur appliquées aux altitudes dans les pays de !’Europe de l’Est et en France. Robert Authonsen: Copenhague.
  • 27. Zilkoski, B.D. (2016). Basic Procedures and tools for determining valid NAVD 88 heights for constraints. GPS WORLD. GNSS Positioning Navigaton Timing. Retrieved August 22, 2024, from https://www. gpsworld.com/how-to-determine-navd-88-heights-for-constraints/?utm_source$=$chatgpt.com.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68ac7543-a83a-4ee2-9867-7ec09de28d25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.