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Abstract. Using the new method of the construction of lower density operator
introduced in the earlier paper of the first two authors, we study how much the new
operator can be different from the classical one. The aim of this paper is to show that
if f is a good adjusted measure-preserving bijection then the lower density operator
generated by f can be really different from the classical density operator.
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1. INTRODUCTION

The density topology plays essential role in the study of approximate continuity,
approximate differentiation ([1,3,4]), and in the potential theory ([6]). In this paper we
study a new method of constructing a large class of lower density operators generated
by measure-preserving bijections, which where introduced by the first authors ([5]).

Let S be a σ-algebra of subsets of X and let I ⊂ S be a σ-ideal. For A, B ∈ S, if
the symmetric difference A∆B belongs to I, then we will write A ∼ B.

Let Φ : S → S be a a lower density operator on S, i.e. for each A, B ∈ S, the
following conditions are fulfilled:

1. Φ(∅) = ∅, Φ(X) = X;
2. if A ∼ B, then Φ(A) = Φ(B);
3. Φ(A ∩ B) = Φ(A) ∩ Φ(B);
4. Φ(A) ∼ A.

If X = R, S is a σ-algebra L of Lebesgue measurable sets and I - a σ-ideal N of
nullsets, then the classical density operator Φd assigns to each A ∈ L the set Φd(A)
of all density points of A, of the form

Φd(A) =
{

x ∈ R : lim
h→0

λ([x − h, x + h] ∩ A)
2h

= 1
}

,
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where λ stands for Lebesgue measure on R. It is nearly obvious that

Int(A) ⊂ Φd(A) ⊂ A (1.1)

for each measurable set A, where Int(A) and A denote the interior and closure of A,
respectively.

In [5] authors concentrate on lower density operators for which the analogue of (1.1)
is not fulfilled for some A in S. They prove that if f : R → R is a measure-preserving
bijection, i.e. λ(f(A)) = λ(A) = λ(f−1(A)) for each A ∈ L, then the operator
Φf : L → L defined as follows:

Φf (A) = f−1 (Φd(f(A))) (1.2)

for each A ∈ L, is a lower density operator. Using this method there are given two
examples of lower density operators for which the first or the second inclusion from (1.1)
does not hold.

In this note we focus on comparison of the classical density operator Φd with the
operator Φf generated by measure-preserving bijection f .

Obviously, if Φ is an arbitrary lower density operator defined on a family of
Lebesgue measurable sets, then from the Lebesgue Density Theorem follows that
the symmetric difference of Φ(A) and Φd(A) must be a set of measure zero for an
arbitrary measurable A. However, the symmetric difference between Φ(A) and Φd(A)
can be a large set in the sense of cardinality, as well as the Baire category.

The main result is Theorem 2.2 saying that the difference Φf (A)\Φd(A) can be a set
of cardinality continuum. Here we use as A some subset of a symmetric Cantor-type
set C ⊂ [0, 1], where Lebesgue measure of C equals 1/2, and f is a suitably adjusted
measure-preserving bijection on [0,1]. We prove also that if g = f−1 and A = (0, 1/2),
then Φd(A) \ Φg(A) is a set of the second category, so is big in the Baire category
sense (Theorem 2.6).

In the last part we prove that the equalities Φf (A) = Φd(A) and Φf (A + a) =
Φf (A) + a hold for arbitrary measurable A and a ∈ R if and only if f(x) = x + c or
f(x) = −x + c, where c is an arbitrary real number.

2. Φf VERSUS Φd

It is easy to see that Φf ∆Φd can be denumerable. Let Z denote the set of integers. Put

f(x) =
{

x + (−1)⌊x⌋ for x /∈ Z,

x for x ∈ Z

and
A =

⋃

k∈Z

[(
2k + 1

2 , 2k + 1
)

∪
(

2k + 1, 2k + 3
2

)]
.

Then
f(A) =

⋃

k∈Z

[(
2k − 1

2 , 2k

)
∪
(

2k, 2k + 1
2

)]
,
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so
Φd (f (A)) = f(A) ∪

⋃

k∈Z
{2k}

and
Φf (A) = f−1 (Φd (f(A))) = A ∪

⋃

k∈Z
{2k}.

Simultaneously, Φd(A) = A ∪⋃k∈Z{2k + 1}, so

Φd(A) △ Φf (A) = Z.

The proof that this symmetric difference can be a set of cardinality continuum is
more complicated. For this purpose we need some auxiliary lemma.

Lemma 2.1. If f : (0, 1) → (0, 1) is a bijection such that

λ((0, b)) = λ(f((0, b))) = λ
(
f−1((0, b))

)

for an arbitrary b ∈ (0, 1], then f is a measure-preserving bijection.

Proof. First we will prove that for arbitrary a ∈ [0, 1)

λ((a, 1)) = λ (f((a, 1))) = λ
(
f−1((a, 1))

)
. (2.1)

Let a ∈ [0, 1). From our assumption we obtain

λ (f((a, 1))) = 1 − λ (f((0, a))) = 1 − a = λ((a, 1))

and
λ
(
f−1((a, 1))

)
= 1 − λ

(
f−1((0, a))

)
= 1 − a = λ((a, 1)).

Hence for arbitrary a ∈ [0, 1), b ∈ (0, 1], a < b

λ((a, b)) = λ(f((a, b))) = λ
(
f−1((a, b))

)
. (2.2)

If A ⊂ (0, 1) is open or closed, then from (2.2)

λ(A) = λ(f(A)) = λ
(
f−1(A)

)
.

Now let E be a measurable subset of (0, 1). There exists a decreasing sequence
{Gn}n∈N of open sets and an increasing sequence {Fn}n∈N of closed sets such that

∞⋃

n=1
Fn ⊂ E ⊂

∞⋂

n=1
Gn

and
λ(Fn) ↗ λ(E) ↙ λ(Gn).
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Hence ∞⋃

n=1
f(Fn) ⊂ f(E) ⊂

∞⋂

n=1
f(Gn) (2.3)

and
λ(f(Fn)) ↗ λ(E) ↙ λ(f(Gn)),

so

λ

( ∞⋃

n=1
f(Fn)

)
= λ (E) = λ

( ∞⋂

n=1
f(Gn)

)
. (2.4)

Consequently, from (2.3) and (2.4), λ(f(E)) = λ(E).
Analogously,

∞⋃

n=1
f−1(Fn) ⊂ f−1(E) ⊂

∞⋂

n=1
f−1(Gn)

and
λ(f−1(Fn)) ↗ λ(E) ↙ λ(f−1(Gn)),

so
λ
(
f−1(E)

)
= λ(E),

i.e. f is a measure-preserving bijection.

Theorem 2.2. There exists a measure-preserving bijection f : R → R and a measurable
set A ⊂ R such that

card (Φf (A) \ Φd(A)) = c.

Proof. In the first step we construct a symmetric Cantor-type set C ⊂ [0, 1] such that
λ(C) = 1

2 in the following way: remove from [0, 1] the open interval I1
1 with center 1/2

and length 1/4. Designate the remaining closed intervals J1
1 and J1

2 . From J1
1 and J1

2
remove the concentric open intervals I2

1 and I2
2 of length 1/42.

At the k-th stage of the construction there remain 2k closed intervals Jk
1 , . . . , Jk

2k

of equal length. From each Jk
i remove the concentric open interval Ik+1

i of length
1/4k+1, i = 1, . . . , 2k, and so on. Put

C =
∞⋂

k=1

2k⋃

i=1
Jk

i .

Then C is a symmetric perfect nowhere dense set and λ(C) = 1
2 .

From the classical Lebesgue Density Theorem it follows that λ(C \ Φd(C)) = 0.
We will show that card (C \ Φd(C)) = c. It suffices to prove that C \ Φd(C) includes
a non-empty perfect set.

Let us start with I1
1 . There exists k1 ∈ N and j1

1 ∈ {1, . . . , 2k1} such that consecutive
closed intervals Jk1

j1
1

and Jk1
j1

1 +1 contiguous to I1
1 from both sides are shorter than I1

1 .
Denote them by Jk1

j1
1 ,l

and Jk1
j1

1 ,r
, respectively. Observe that if x ∈ Jk1

j1
1 ,l

, then

λ
(
C ∩

[
x, sup I1

1
])

sup I1
1 − x

<
1
2
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and if x ∈ Jk1
j1

1 ,r
, then

λ
(
C ∩

[
inf I1

1 , x
])

x − inf I1
1

<
1
2 .

Put
J1 = Jk1

j1
1 ,l

∪ Jk1
j1

1 ,r
.

If Ik1+1
j1

1
and Ik1+1

j1
1 +1 are open intervals removed in (k1 + 1)-th stage from Jk1

j1
1 ,l

and Jk1
j1

1 ,r
, respectively, then there exists k2 > k1 and j2

1 ∈ {1, . . . , 2k2} such that
consecutive closed intervals Jk2

j2
1

and Jk2
j2

1 +1 contiguous to Ik1+1
j1

1
are shorter that Ik1+1

j1
1

and there exists j2
2 ∈ {1, . . . , 2k2} such that consecutive closed intervals Jk2

j2
2

and Jk2
j2

2 +1

contiguous to Ik1+1
j1

1 +1 are shorter that Ik1+1
j1

1 +1 . Denote the intervals Jk2
j2

1
, Jk2

j2
1 +1, Jk2

j2
2

, Jk2
j2

2 +1

by Jk2
j2

1 ,l
, Jk2

j2
1 ,r

, Jk2
j2

2 ,l
, Jk2

j2
2 ,r

, respectively. If x ∈ Jk2
j2

1 ,l
and z = sup Ik1+1

j1
1

, then

λ (C ∩ [x, z])
z − x

<
1
2

and if x ∈ Jk2
j2

2 ,l
and z = sup Ik1+1

j1
1 +1 , then

λ (C ∩ [x, z])
z − x

<
1
2 .

Similarly, if x ∈ Jk2
j2

1 ,r
and z = inf Ik1+1

j1
1

, then

λ (C ∩ [z, x])
x − z

<
1
2

and if x ∈ Jk2
j2

2 ,r
and z = inf Ik1+1

j1
1 +1 , then

λ (C ∩ [z, x])
x − z

<
1
2 .

Put
J2 = Jk2

j2
1 ,l

∪ Jk2
j2

1 ,r
∪ Jk2

j2
2 ,l

∪ Jk2
j2

2 ,r
.

Suppose that we have chosen closed intervals Jkm
jm

i
, i ∈ {1, . . . , 2m}, and

Jm =
⋃2m

i=1 Jkm
jm

i
.

Consider open intervals Ikm+1
jm

i
, for i ∈ {1, . . . , 2m} removed in (km + 1)-th stage

from Jkm
jm

i
, respectively. There exists km+1 > km such that consecutive closed inter-

vals remaining in the km+1-th stage contiguous to Ikm+1
jm

i
are shorter than Ikm+1

jm
i

,
for i ∈ {1, . . . , 2m}. We will denote the pair of such intervals by Jkm+1

jm+1
i

,l
and Jkm+1

jm+1
i

,r
,

i ∈ {1, . . . , 2m}. Put

Jm+1 =
2m⋃

i=1

(
Jkm+1

jm+1
i

,l
∪ Jkm+1

jm+1
i

,r

)
.
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Observe that if x ∈ Jkm+1
jm+1

i
,l

and z = sup Ikm+1
jm

i
then

λ (C ∩ [x, z])
x − z

<
1
2

and if x ∈ Jkm+1
jm+1

i
,r

and z = inf Ikm+1
jm

i
then

λ (C ∩ [z, x])
x − z

<
1
2

for i ∈ {1, . . . , 2m}.
Put

E =
∞⋂

m=1
Jm.

Clearly, E is perfect, nowhere dense, E ⊂ C and if x ∈ E then x /∈ Φd(C). Obviously
card(E) = c. Consequently,

card(C \ Φd(C)) = c. (2.5)

Now we will construct a measure-preserving bijection f : R → R. It will be
convenient to denote by I1 the open interval I1

1 removed in the first stage of the
construction, I2 and I3 - open intervals I2

1 and I2
2 removed in the second stage,

I2k−1 , I2k−1+1, . . . , I2k−1 - open intervals removed in the k-th stage.
Let D be the set of the left-hand ends of all intervals In, n ∈ N, contiguous to C,

C0 = C \ (D ∪ {0, 1})

and Hn = In ∪ {inf In} for n ∈ N.
Put

f1(x) = λ(C ∩ (0, x))

for x ∈ (0, 1). Then f1 is strictly increasing on C0, constant on intervals In, n ∈ N,
and continuous, so f1((0, 1)) = (0, 1/2). Hence f1 : C0 → (0, 1/2) is a bijection.

Put

f2(x) = 1
2 +

n−1∑

i=1
λ(Ii) + x − inf In

for x ∈ Hn, n ∈ N (we assume that
∑0

i=1 λ(Ii) = 0). Then f2 :
⋃∞

n=1 Hn → [1/2, 1) is
a bijection, too.

At last

f(x) =





f1(x) for x ∈ C0,

f2(x) for x ∈ ⋃∞
n=1 Hn,

x for x /∈ (0, 1).

Clearly, f : R → R is a bijection. Now we will prove that f is a measure-preserving
transformation. It suffices to prove that λ(A) = λ(f(A)) = λ

(
f−1(A)

)
for each

measurable A ⊂ (0, 1).
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Let b ∈ (0, 1]. First we will show that

λ((0, b)) = λ(f((0, b))). (2.6)

We have

(0, b) = [(0, b) ∩ C0] ∪
[

(0, b) ∪
∞⋃

n=1
Hn

]
,

and
λ [(0, b) ∩ C0] = f1(b).

Simultaneously,
f [(0, b) ∩ C0] = f1 [(0, b) ∩ C0] = (0, f1(b)),

so
λ (f [(0, b) ∩ C0]) = f1(b) = λ [(0, b) ∩ C0] . (2.7)

On the other hand,

λ[Hn ∩ (0, b)] = λ[f2(Hn ∩ (0, b))]

for each n ∈ N, as f2 is a translation on each Hn. Hence

λ
(

f [(0, b) ∩
∞⋃

n=1
Hn]

)
=

∞∑

n=1
λ [f2(Hn ∩ (0, b))]

=
∞∑

n=1
λ [Hn ∩ (0, b)] = λ

[
(0, b) ∩

∞⋃

n=1
Hn

]
.

(2.8)

Finally, (2.7) and (2.8) implies (2.6).
Now we will prove that

λ((0, b)) = λ(f−1((0, b))) (2.9)

for b ∈ (0, 1].
Let b ∈ (0, 1/2]. Then

λ(f−1((0, b))) = λ(C0 ∩ f−1((0, b))) = λ(C0 ∩ (0, f−1
1 (b))).

Put x = f−1
1 (b). Hence

λ(C0 ∩ (0, f−1
1 (b))) = λ(C0 ∩ (0, x)) = f1(x) = b,

which gives (2.9) for b ∈ (0, 1/2].
Now let b ∈ (1/2, 1]. We have

f−1((0, b)) = C0 ∪
[ ∞⋃

n=1
Hn ∩

[
1
2 , b

)]
,
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so we get

λ(f−1((0, b))) = λ(C0) + λ

( ∞⋃

n=1
Hn ∩

[
1
2 , b

))
= 1

2 + b − 1
2 = λ((0, b)).

Consequently, the equality (2.9) holds for each b ∈ (0, 1]. Using Lemma 2.1 we
obtain that f is a measure-preserving bijection.

Finally we will prove that

card (Φf (C0) \ Φd(C0)) = c. (2.10)

Obviously, C \ C0 is denumerable, so Φd(C0) = Φd(C) and using (2.5) we obtain

card (C0 \ Φd(C0)) = c.

On the other hand, f(C0) = (0, 1/2) = Φd(f(C0)), so Φf (C0) = C0, which proves
(2.10).

In [2] A. Denjoy proved that the set of points of porosity of a nonempty closed
nowhere dense set F ⊂ R is residual in F (compare also [9], Proposition 2.7). Hence,
as each point of porosity of F is not a density point of F , we obtain
Theorem 2.3. If C ⊂ [0, 1] is a symmetric Cantor set such that λ(C) = 1/2, then
Φd(C) is of the first category in C.
Corollary 2.4. Φd(C) is of the first category in C0.

Now let f be a function from Theorem 2.2.
Theorem 2.5. The set f(Φd(C)) is of the first category in (0, 1/2).

Proof. From Corollary 2.4 it follows that Φd(C) ⊂ ⋃∞
n=1 Fn, where Fn, for n ∈ N,

are closed subsets of C nowhere dense in C0. Let n ∈ N. Observe that f(Fn ∩ C0) is
nowhere dense in (0, 1/2). Indeed, if (a, b) ⊂ (0, 1/2), a < b, then there exist x1, x2 ∈ C0
such that f(x1) = λ(C0 ∩ (0, x1)) = a and f(x2) = λ(C0 ∩ (0, x2)) = b. Hence
(x1, x2) ∩ C0 ̸= ∅ as λ(C0 ∩ (x1, x2)) > 0. Then there exists an interval (c, d) ⊂ (x1, x2)
such that C0 ∩ (c, d) ̸= ∅ and C0 ∩ (c, d) ∩ Fn = ∅, so (f(c), f(d)) ∩ f(Fn ∩ C0) = ∅.
Clearly, the interval (f(c), f(d)) is non-degenerated, as λ((f(c), f(d))) = λ((c, d)) > 0,
and (f(c), f(d)) ⊂ (a, b). Consequently, f(Fn ∩ C0) is nowhere dense in (0, 1/2), for
n ∈ N.

Now we will prove that the difference between Φd(A) and Φg(A) can be a set which
is big in the category sense, for some measure-preserving bijection g : R → R.
Theorem 2.6. There exists a measure-preserving bijection g : R → R and a measurable
set A ⊂ R such that Φd(A) \ Φg(A) is of the second category.

Proof. Let f be a function from Theorem 2.2. Put g = f−1 and A = (0, 1/2). We have
g(A) = C0, Φd(g(A)) = Φd(C0) = Φd(C) and Φg(A) = g−1(Φd(C)) = f(Φd(C)). From
the previous theorem Φg(A) is of the first category in (0, 1/2), while Φd(A) = (0, 1/2),
so Φd(A) \ Φg(A) is residual on (0, 1/2).
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It is natural to ask when Φf (A) = Φd(A) for each A ∈ L. We will prove that this
equality holds if and only if f(x) = x + c or f(x) = −x + c where c is an arbitrary
real number.

Theorem 2.7. If f(x) = x + c or f(x) = −x + c, where c ∈ R is arbitrary, then
Φf (A) = Φd(A) for each measurable A ⊂ R.

Proof. Let f(x) = x + c, where c ∈ R. Then for arbitrary A ∈ L

Φf (A) = f−1 (Φd (f(A))) = f−1 (Φd(A) + c) = Φd(A) + c − c = Φd(A).

In the second case the proof is analogous.

Let τd denote the classical density topology on the real line (comp. [7, 8]), i.e.

τd = {A ∈ L : A ⊂ Φd(A)}.

Theorem 2.8. If Φf (A) = Φd(A) for each A ∈ L, then f(x) = x+ c or f(x) = −x+ c
for some c ∈ R.

Proof. From the assumption it follows that

f−1 (Φd (f(A))) = Φd(A)

for each A ∈ L, so
Φd (f(A)) = f (Φd(A)) .

Hence if A ∈ τd then f(A) ∈ τd, as A ⊂ Φd(A) implies f(A) ⊂ f (Φd(A)) = Φd (f(A)) .
Obviously, R = (−∞, x0) ∪ {x0} ∪ (x0, ∞) for each x0 ∈ R, so

f ((−∞, x0)) ∪ f ((x0, ∞)) = R \ {f(x0)} (2.11)

and f ((−∞, x0)), f ((x0, ∞)) are open in τd.
Observe that

Φd (f ((−∞, x0))) ∪ Φd (f ((x0, ∞))) = R \ {f(x0)}.

The inclusion ” ⊃ ” is obvious. On the other hand, if

f(x0) ∈ Φd (f ((−∞, x0))) ∪ Φd (f ((x0, ∞))) ,

then R is a union of two disjoint non-empty sets from τd - a contradiction, as the
families of sets which are connected in the density topology and in the natural topology
on the real line are equal (compare with [4, Theorem 3]).

Now we will show that

f ((−∞, x0)) = (−∞, f(x0)) and f ((x0, ∞)) = (f(x0), ∞) (2.12)

or
f ((−∞, x0)) = (f(x0), ∞) and f ((x0, ∞)) = (−∞, f(x0)) . (2.13)
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Suppose that this is not the case. Then there exist two points y1 ∈ f ((−∞, x0))
and y2 ∈ f ((x0, ∞)) such that y1, y2 ∈ (−∞, f(x0)) or y1, y2 ∈ (f(x0), ∞). Consider
the first case. If (z1, z2) is an open interval such that (z1, z2) ⊂ (−∞, f(x0)) and
y1, y2 ∈ (z1, z2) then (z1, z2) ∩ f((−∞, x0)) ∈ τd and (z1, z2) ∩ f((x0, ∞)) ∈ τd. Since
(z1, z2) ⊂ R \ {f(x0)}, from (2.11) we obtain

(z1, z2) = (z1, z2) ∩ f((−∞, x0)) ∪ (z1, z2) ∩ f((x0, ∞))

and both summands are non-empty, so (z1, z2) is not connected on τd – a contradiction.
The proof in the second case is analogous.

Now from the arbitrariness of x0 ∈ R, using (2.12) or (2.13) we will prove that f
is monotone. Suppose that (2.12) holds. Let x1 < x2, x1, x2 ∈ R. Then

(−∞, f(x1)) = f ((−∞, x1)) ⊂ f((−∞, x2)) = (−∞, f(x2)),

so f(x1) < f(x2), i.e. f is increasing.
Analogously, f is decreasing if (2.13) holds. Since f is a monotone bijection, it must

be continuous.
Now we will prove that f must be a linear function of the form f(x) = x + c or

f(x) = −x + c, for some c ∈ R.
Assume that f is increasing. Fix x1, x2 ∈ R, x1 < x2. Then f((x1, x2)) =

(f(x1), f(x2)), so f(x2) − f(x1) = x2 − x1, as f preserves measure. Hence

f(x2) = x2 + (f(x1) − x1).

From the arbitrariness of x1 and x2 we obtain

f(x) = x + c

for all x ∈ R. If f is decreasing the proof is analogous.

Now we will prove that Φf (A + a) = Φf (A) + a for each A ∈ L and a ∈ R if and
only if f is linear function of the form f(x) = x + c or f(x) = −x + c, where c ∈ R
is arbitrary. Obviously, such equality holds for the classical density operator, as the
Lebesgue measure is invariant with respect to translation.

Theorem 2.9. If f(x) = x + c or f(x) = −x + c, where c ∈ R is arbitrary, then

Φf (A + a) = Φf (A) + a

for each A ∈ L and a ∈ R.

Proof. Let A ∈ L and a ∈ R. According to Theorem 2.7, if f(x) = x + c then

Φf (A + a) = Φd(A + a) = Φd(A) + a = Φf (A) + a.

In the second case the proof is analogous.
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Theorem 2.10. If Φf (A+a) = Φf (A)+a for each A ∈ L and a ∈ R then f(x) = x+c
or f(x) = −x + c for some c ∈ R.

Proof. If A1, A2 ∈ L and A1 ⊂ A2 then Φf (A1) ⊂ Φf (A2), as Φf is a lower density
operator. In particular, if A = (−∞, x0) for some x0 ∈ R and a > 0 then A ⊂ A + a,
so

Φf (A) ⊂ Φf (A + a) = Φf (A) + a. (2.14)

We will prove that if A = (−∞, x0) then B = Φf (A) = Φf ((−∞, x0)) is also a left
half-line. Suppose that it is not the case. Then there exist two points y1, y2 ∈ R, y2 < y1
such that y1 ∈ B and y2 /∈ B. If a = y1 − y2 then y2 + a = y1 ∈ B. Simultaneously
y2 + a /∈ B + a - a contradiction, as from (2.14)

B = Φf (A) ⊂ Φf (A + a) = B + a.

Hence Φf (A) is a left half-line (open or closed). Similarly one can prove that
Φf ((x0, ∞)) is a right-half-line (open or closed).

As Φf is a lower density operator, we have

λ (Φf ((−∞, x0))∆(−∞, x0)) = 0,

so Φf ((−∞, x0)) = (−∞, x0) or Φf ((−∞, x0)) = (−∞, x0] as both sets are left
half-lines. Similarly we prove that Φf ((x0, ∞)) = (x0, ∞) or Φf ((x0, ∞)) = [x0, ∞).

Suppose that Φf ((−∞, x0)) = (−∞, x0]. From the third property of a lower density
operator Φf ((x0, ∞)) = (x0, ∞) and

Φf ((−∞, x0)) ∪ Φf ((x0, ∞)) = R.

Hence f (Φf ((−∞, x0)) ∪ Φf ((x0, ∞))) = R. On the other hand for arbitrary C ∈ L

f(Φf (C)) = Φd(f(C)), (2.15)

so
Φd(f((−∞, x0))) ∪ Φd(f((x0, ∞))) = R,

a contradiction, as R is connected relative to the density topology τd.
Similarly one can proceed under the assumption Φf ((x0, ∞)) = [x0, ∞).
Consequently, Φf ((−∞, x0)) = (−∞, x0) and Φf ((x0, ∞)) = (x0, ∞).
Hence, using (2.15),

Φd(f((−∞, x0))) = f (Φf ((−∞, x0))) = f((−∞, x0))

and
Φd(f((x0, ∞))) = f (Φf ((x0, ∞))) = f((x0, ∞)),

so f((−∞, x0)) ∈ τd and f((x0, ∞)) ∈ τd. Clearly,

f((−∞, x0)) ∪ f((x0, ∞)) = R \ {f(x0)}.
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Now we will prove that f((−∞, x0)) = (−∞, f(x0)) or f((−∞, x0)) = (f(x0), ∞).
Suppose that this is not the case. Then there exist two points x1, x2 ∈ R,
x1 < x0 < x2 such that f(x1) and f(x2) are in the same half-line. To fix ideas
suppose that f(x1), f(x2) ∈ (−∞, f(x0)). If (z1, z2) is an open interval such that
f(x1), f(x2) ∈ (z1, z2) and (z1, z2) ⊂ (−∞, f(x0)) then ∅ ≠ (z1, z2)∩f((−∞, x0)) ∈ τd

and ∅ ̸= (z1, z2) ∩ f((x0, ∞)) ∈ τd. As f(x0) /∈ (z1, z2), (z1, z2) is not connected
in τd – a contradiction.

In the second case the proof is analogous. Similarly as in the proof of Theorem 2.8
we obtain that f is monotone and continuous. Simultaneously, as f preserves measure,
f(x) = x + c if f is increasing and f(x) = −x + c in the other case.
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