Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-68a22729-655e-46c8-9fbc-403e15fcbc9e

Czasopismo

Journal of Ecological Engineering

Tytuł artykułu

Wastewater Treatment Methods for Effluents from the Confectionery Industry – an Overview

Autorzy Zajda, Magdalena  Aleksander-Kwaterczak, Urszula 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Wastewater from the confectionery industry is characterized by daily and seasonal variability of composition and quantity which adversely affects the process of their disposal. Confectionery plants discharge about 300-500 m3per month of technological wastewater. Sewage from the confectionery industry belongs to biologically degradable. It is characterized by high values of chemical oxygen demand (COD) and biological oxygen demand (BOD). The article reviews various methods used to treat wastewater from the confectionery industry. Attention was paid to the applicability of a particular method, its advantages and disadvantages and the costs of implementation. The technology of industrial wastewater treatment uses both mechanical and physicochemical methods as well as biological ones. Techniques of sewage treatment usually consist of several stages which use different processes. Low-cost materials such as natural minerals, agricultural waste, industrial waste, biosorbents, and others contribute to the improvement of aerobic sewage conditions. The main weakness of typical sewage treatment plants is their large area, high investment, and exploitation costs. Therefore, a good solution may be the use of the membrane biological reactor which combines the classical technique of activated sludge and filtration on micro-filtering membranes.
Słowa kluczowe
EN confectionery industry   wastewater treatment   biological oxygen demand   chemical oxygen demand   low-cost material  
Wydawca Polskie Towarzystwo Inżynierii Ekologicznej
Czasopismo Journal of Ecological Engineering
Rocznik 2019
Tom Vol. 20, nr 9
Strony 293--304
Opis fizyczny Bibliogr. 73 poz., rys., tab.
Twórcy
autor Zajda, Magdalena
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection; al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor Aleksander-Kwaterczak, Urszula
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection; al. A. Mickiewicza 30, 30-059 Krakow, Poland, aleksa@geolog.geol.agh.edu.pl
Bibliografia
1. Akbal F., Camcı S., 2011. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269, 214–222.
2. Al-Jlil S.A., 2009. COD and BOD reduction of domestic wastewater using activated sludge, sand filters and activated carbon in Saudi Arabia. Biotechnology, 8, 473-477.
3. Amani T., Nosrati M., Sreekrishnan T.R., 2010. Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects – a review. Environmental Reviews, 18, 255–278.
4. Ariffin N., Abdullah M.M.A.-B., Zainol M.R.R.M.A., Murshed M.F., Zain H., Faris M.A., Ridho B., 2017. Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web of Conferences, 97, 1-8.
5. Atashi H., Ajamein H., Ghasemian S., 2010. Effect of operational and design parameters on removal efficiency of a pilot-scale UASB reactor in a sugar factory. World Applied Sciences Journal, 11(4), 451-456.
6. Bartkiewicz B., Umiejewska K., 2010. Treatment of industrial wastewater. PWN, Warszawa (in Polish).
7. Benincá C., Peralta-Zamora P., Tavares C.R.G., Igarashi-Mafra L., 2013. Degradation of an azo dye (Ponceau 4R) and treatment of wastewater from a food industry by ozonation. Ozone Science and Engineering, 35(4), 295-301.
8. Bhargava A., 2016. Physico-chemical waste water treatment technologies: an overview. International Journal of Scientific Research and Education, 4, 2321-7545.
9. BOD & COD treatment with ozone. https://www.ozonetech.com/water-treatment/cod-bod-treatment-ozone. Accessed 11 November 2018.
10. Bough W.A., 1976. Chitosan a polymer from seafood waste, for use in treatment of food processing wastes and activated sludge. Process Biochemistry, 11(1), 13–16.
11. Construction of a factory sewage treatment plant for Tymbark in Olsztynek. http://www.veoliawatertechnologies.pl/media/case_studies_Veolia/oczyszczalnia_sciekow_Tymbark_Olsztynek.htm. Accessed 08 January 2019 (in Polish).
12. Byadgi S.A., Sharanappanavar M.S., Dhamoji B., Nadaf A., Munennavar S., 2017. Treatment of sugar industry waste water using zinc electrodes. International Journal of Engineering Technology Science and Research, 4(6), 664-668.,
13. Carvalho J., Araujo J., Castro F., 2011. Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview. Waste Biomass Valor, 2, 157-167.
14. Chen X., Chen G., Yue P.L., 2000. Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology, 19, 65–76.
15. Cicek N., 2003. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can. Biosyst. Eng., 45(6), 37–49.
16. Colic M., Acha E., Lechter A., 2009. Advanced pretreatment enables MBBR treatment of high strength candy manufacturing wastewater. Proceedings of the Water Environment Federation, WEFTEC: Session 61 through Session (11), 70, 4142-4152.
17. Dakhil I.H., 2013. Adsorption of methylene blue dye from wastewater by spent tea leaves. Journal of Kerbala University, 1, 5-14.
18. Demirel B., Yenigun O., Onay T.T., 2005. Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 40(8), 2583–2595.
19. Devi R., Singh V., Kumar A., 2008. COD and BOD reduction from coffee processing wastewater using avocado peel carbon. Bioresource Technology, 99, 1853-1860.
20. Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment (91/271/EEC).
21. Edwards W.P., 2000. The science of sugar confectionery. The Royal Society of Chemistry. Cambridge, UK, 1-222.
22. El Diwani G., El Abd H., Hawash S., El Ibiari N., El Rafei S., 2000. Treatment of confectionery and gum factory wastewater effluent. Adsorption Science & Technology, 18(9), 813-821.
23. El-Dars F.M.S.E., Ibrahim M.A., Gabr A.M.E., 2014. Reduction of COD in water-based paint wastewater using three types of activated carbon. Desalination and water treatment, 52, 2975-2986.
24. Fazal S., Zhang B., Zhong Z., Gao L., Chen X., 2015. Industrial wastewater treatment by using MBR (Membrane Bioreactor) Review study. Journal of Environmental Protection, 6, 584-598.
25. Keshmirizadeh E., Yousefi S., Rofouei M.K., 2011. An investigation on the new operational parameter effective in Cr (VI) removal efficiency: a study on electrocoagulation by alternating pulse current. Journal of Hazardous Materials, 190, 119-124.
26. Elhassadi A., 2008, Pollution of water resources from industrial effluents: a case study-Benghaz, Libya. Desalination, 222, 286–293.
27. El-kalyoubi M., Khallaf M.F., Abdelrashid A., Mostafa E.M., 2011. Quality characteristics of chocolate – containing some fat replacer. Annals of Agricultural Science, 56, 89–96.
28. Environmental Protection Agency, 1997. Wastewater treatment manuals primary, secondary and tertiary treatment, Ireland. ISBN 1 899965 46 7.
29. Ersahin M.E., Dereli R.K., Ozgun H., Donmez B.G., Koyuncu I., Altinbas M., Ozturk I., 2011. Source based characterization and pollution profile of a baker s yeast industry. Clean–Soil, Air, Water, 39, 543–548.
30. Esparza-Soto M., Arzate-Archundia O., Solís-Morelos C., Fall C., 2013. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time. Water Science & Technology, 67(6), 1353-1361.
31. García-Morales M.A., Juárez J.C.G., Martínez-Gallegos S., Roa-Morales G., Peralta E., del Campo López E.M., Barrera-Díaz C., Miranda V.M., Blancas T.T., 2018. Pretreatment of real wastewater from the chocolate manufacturing industry through an integrated process of electrocoagulation and sand filtration. International Journal of Photoenergy, 2146751, 1-7.
32. Gromiec M., Sadurski A., Zalewski M., Rowiński P., 2014. Threats related to water quality. Nauka 1, 99122 (in Polish).
33. Hashemian S., Salari K., Yazdi Z.A., 2014. Preparation of activated carbon from agricultural wastes (almond Shell and orange peel) for adsorption of 2-pic from aqueous solution. Journal of Industrial and Engineering Chemistry, 20, 1892–1900.
34. Henze M., van Loosdrecht M.C.M., Ekama G.A., Brdjanovic D. (Eds.), 2008. Biological wastewater treatment: principles, modelling and design. ISBN: 9781843391883, IWA Publishing. London, UK.
35. Judd S., 2006. The MBR book: Principles and applications of membrane bioreactors in water and wastewater. London, England: Elsevier.
36. Kadirvelu K., Kavipriya M., Karthika C., Radhika M., Vennilamani N., Pattabhi S., 2003. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresource Technology, 87, 129–132.
37. Khan M., Mahmood T., Kalsoom U., Riaz M., Khan A.R., 2003. Characterization and treatment of industrial effluent from sugar industry. Journalchemical society of Pakistan, 25(3), 242-247.
38. Krzanowski S., Walega A., Pasmionka I., 2008. Wastewater treatment of selected food industry. Infrastruktura i Ekologia Terenów Wiejskich, 1, 1-89 (in Polish).
39. Lin H., Gao W., Meng F., Liao B.-Q., Leung K.-T., Zhao L., Chen J., Hong H., 2012. Membrane Bioreactors for Industrial Wastewater Treatment: A Critical Review. Critical Reviews in Environmental Science and Technology, 42(7), 677-740.
40. Liu Y., Xu H.-L., Yang S.-F., Tay J.-H., 2003. Mechanisms and models for anaerobic granulation in up flow anaerobic sludge blanket reactor. Water Research, 37, 661–673.
41. Mai Z., 2014. Membrane processes for water and wastewater treatment: study and modelling of interactions between membrane and organic matter. HAL. https://tel.archives-ouvertes.fr/tel00969165.
42. Marrot B., Barrios‐Martinez A., Moulin P., Roche N., 2004. Industrial wastewater treatment in a membrane bioreactor: A review. Wastewater, 23(1), 59-68.
43. Mollah M.Y., Morkovsky P., Gomes J.A.G., Kesmez M., Parga J., Cocke D.L., 2004. Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1-3), 199-210.
44. Mollah M.Y.A., Schennach R., Parga J.R., 2001. Electrocoagulation (EC) science and applications. Journal of hazardous, 84(1), 29-41.
45. Mortula M., Shabani S., Rumaithi K.A., Nawaz W., Kashwani G., 2011. Removal of phosphorus and BOD from secondary effluent using coagulation. International Conference on Energy, Water and Environment.
46. Nayl A.E.A., Elkhashab R.A., El Malah T., Yakout S.M., El-Khateeb M.A., Ali M.M.S., Ali H.M., 2017. Adsorption studies on the removal of COD and BOD from treated sewage using activated carbon prepared from date palm waste. Environmental Science and Pollution Research, 24, 22284-22293.
47. Ntuli F., Kuipa P.K., Muzenda E., 2011. Designing of sampling programmes for industrial effluent monitoring. Environmental Science and Pollution Research, 18, 479–484.
48. Ozgun H., Karagul N., Dereli R.K., Ersahin M.E., Coskuner T., Ciftci D.I., Ozturk I., Altinbas M., 2012. Confectionery industry: a case study on treatability-based effluent characterization and treatment system performance. Water Science & Technology, 66(1), 15-20.
49. Paprowicz J.T., 1990. Activated carbons for phenols removal from wastewaters. Environ. Technol., 11, 71–82.
50. Parande A.K., Sivashanmugam A., Beulah H., Palaniswamy N., 2009. Performance evaluation of low cost adsorbents in reduction of COD in sugar industrial effluent. Journal of Hazardous Materials, 168, 800-805.
51. Park E., Enander R., Barnett S.M., Lee C., 2001. Pollution prevention and biochemical oxygen demand reduction in a squid processing facility. Journal of Hazardous Materials, 9, 341–349.
52. Phuong N.T.T., Tien T.T., Hoa P.T.T., Nam T.V., Luu T.L., 2018. Treatment of cake shop wastewater by pilot-scale submerged membrane bioreactor (SMBR). Bioresource Technology Reports, 4, 101-105.
53. Próba M., Wolny L., 2013. Industry and water environment. Chemia Przemysłowa, 4 (in Polish).
54. Qasim W., Mane A.V., 2013. Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1-12.
55. Ratajczak P., 2013. Membrane processes – introduction. Nauka i technika, 4, 16-20 (in Polish).
56. Regional Centre for Environmental Health Activities CEHA, 2006. A kompendium of standards for wastewater reuse in the Eastern Mediterranean Region.
57. Rajman A., 2007. Bioindication and impact on living organisms of sewage in the textile industry. Problemy Ekologii, 1(11), 41-46 (in Polish).
58. Rucka K., Balbierz P., Mańczak M., 2012. Assessment of the possibility of wastewater treatment from the confectionery industry. In: Traczewska T.M., (ed.), Interdisciplinary Issues in Engineering and Environmental Protection 2, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 429-434 (in Polish).
59. Rucka K., Mańczak M., Balbierz P., 2014. Technological research of wastewater treatment from the confectionery industry using activated sludge. In: Traczewska T.M. and Kaźmierczak B. (eds), Interdisciplinary Issues in Engineering and Environmental Protection 4, Oficyna Wydawnicza Politechniki Wrocławskiej, 699-706 (in Polish).
60. Seghezzo L., Zeeman G., van Liel J.B., Hamelers H.V.M., Lettinga G., 1998. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology, 65(3), 175-190.
61. Sahu O., 2017. Treatment of sugar processing industry effluent up to remittance limits: suitability of hybrid electrode for electrochemical reactor. MethodsX, 4, 172-185.
62. Sahu O., Mazumdar B., Chaudhari P.K., 2014. Treatment of wastewater by electrocoagulation: a review. Environmental Science and Pollution Research, 21(4), 2397-2413.
63. Sanou Y., Pare S., Baba G., Segbeaya K.N., BonziCoulibaly L.Y., 2016. Removal of COD in wastewaters by activated charcoal from rice husk. Revue des sciences de l’eau, 29(3), 265–277.
64. Scholz M., 2016. Activated sludge processes. Wetlands for Water Pollution Control, 15, 91-105.
65. Tanksali A.S., 2013. Treatment of sugar industry wastewater by upflow anaerobic sludge blanket reactor. International Journal of ChemTech Research, 5, 1246-1253.
66. Tchamango S., Nanseu-Njiki C.P., Ngameni E., Hadjiev D., Darchen A., 2010. Treatment of dairy effluents by electrocoagulation using aluminum electrodes. Science of the Total Environment, 408, 947–952.
67. Thirugnanasambandham K., Sivakumar V., Maran J.P., 2013. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent. Journal of Serbian Chemical Society, 5, 78613–78626.
68. US EPA, 1999. Wastewater Technology Fact Sheet Ozone Disinfection. Office of Water Washington, D.C., EPA 832-F-99-063.
69. Van der Bruggen B., Vandecasteele C., Van Gestel T., Doyen W., Leysen R., 2003. A review of pressure-driven membrane processes in process and wastewater treatment and in drinking water production. Environmental Progress, 22(1), 46–56.
70. Vanerkar A.P., Satyanarayan S., Satyanarayan S., 2013. Treatment of food processing industry wastewater by a coagulation/flocculation process. International Journal of Chemical and Physical Sciences, 2, 63-72.
71. Yakout S.M., Sharaf El-Deen G., 2016. Characterization of activated carbon prepared by phosphoric acid activation of olive stones. Arabian Journal of Chemistry, 9, 1155–1162.
72. Yamina G., Abdeltif A., Youcef T., Mahfoud H.D., Fatiha G., Lotfi B., 2013. A comparative study of the addition effect of activated carbon obtained from date stones on the biological filtration efficiency using sand dune bed. Energy Procedia, 36, 1175–1183.
73. Zulaikha S., Lau W.J., Ismail A.F., Jaafar J., 2013. Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes. Journal of Water Process Engineering, 2, 58-62.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-68a22729-655e-46c8-9fbc-403e15fcbc9e
Identyfikatory
DOI 10.12911/22998993/112557