PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Anisotropy on the Viscoplastic Properties of a Hot Rolled Ti6Al4V Titanium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the influence of strain rate on the anisotropy of the Ti6Al4V titanium alloy has been analyzed. Tensile tests of notched specimens were carried out in three loading orientations (0°, 45°, and 90°) with respect to the rolling direction, using the servo-hydraulic testing machine and Hopkinson bar. Investigation was supported by the digital image correlation analysis of strain distribution on the specimen surface and assessment of the fracture mechanism. The Ti6Al4V titanium alloy reveals a typical strain rate hardening behavior; however, strain rate sensitivity is independent of the loading orientation. Increases of the loading orientation results in material softening, observed as lowered yield stress, whereas plastic strain exponent and modulus remain unaffected. Fracture strain decreases with loading orientation at quasi-static and dynamic loading conditions.
Twórcy
autor
  • Motor Transport Institute, 80 Jagiellońska Str., 03-301 Warsaw, Poland
  • Motor Transport Institute, 80 Jagiellońska Str., 03-301 Warsaw, Poland
autor
  • Motor Transport Institute, 80 Jagiellońska Str., 03-301 Warsaw, Poland
Bibliografia
  • [1] J. Won, C. H. Park, S.-G. Hong, C. S. Lee, J. Alloy Compd. 651, 245-254 (2015).
  • [2] Song J.-H., Hong K.-J., T.K. Ha, Mat. Sci. Eng. A 449-451, 144-148 (2007).
  • [3] H. Francillette, M. Benmaouche, N. Gauquelin, J. Mater. Process. Tech. 198, 86-92 (2008).
  • [4] V. Tuninetti, G. Gilles, O. Milis, T. Pardoen , A. M. Habraken, Int. J. Plast. 67, 53-68 (2015).
  • [5] J. Zhang, Y. Wang, Mat. Sci. Eng. A 605, 59-64 (2014).
  • [6] J. Peirs, P. Verleysen, J. Degrieck, Procedia Engineering 10, 2336-2341 (2011)
  • [7] L.-Q. Yang, Y.-Q. Yang, Deformed microstructure and texture of Ti6Al4V alloy. Trans. Nonferrous Met. Soc. China 24, 3103-3110 (2014).
  • [8] G. R. Johnson, W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, in: Proceedings of the 7th International Symposium on Ballistics, the Hague, the Netherlands, 19-21 April 1983.
  • [9] N. J. Hoff, Q. Appl. Math. 12, 49-55 (1954).
  • [10] A. S. Khan, Y. S. Suh, R. Kazmi, Int. J. Plast. 20, 2233-2248 (2004).
  • [11] J. Litonski, Plastic flow of a tube under adiabatic torsion, Bull. Pol. Acad. Sci.-Te. 25, 7-17 (1977).
  • [12] P. S. Follansbee, U. F. Kocks, Acta Metall. 36, 82-93 (1988).
  • [13] F.J. Zerilli, R. W. Armstrong, J. Appl. Phys. 61, 1816-1825 (1987).
  • [14] S. Nemat-Nasser, W. G. Guo, V. F. Nesterenko, S. S. Indrakanti, Y.-B. Gu , Mech. Mater. 33, 425-439 (2001).
  • [15] A. Rusinek, J. A. Rodríguez-Martínez, J. R. Klepaczko, R. B. Pęcherski, Mater. Design 30, 1748-1761 (2009).
  • [16] A. Rusinek, J. A. Rodríguez-Martínez, A. Arias, Int. J. Mech. Sci. 52, 120-135 (2010).
  • [17] W. Moćko, A. Brodecki, L. Kruszka, Mech. Mater. 92, 18-27 (2016).
  • [18] R. Hill, Proc. Roy. Soc. London A193, 281-297 (1948).
  • [19] W. Hosford, On the yield loci of anisotropic cubic metals, In: A Arbor (Ed.), 7th North American Metalworking Conf. Michigan, USA, 13-16 May, 1979, pp. 191-197. ASME Michigan.
  • [20] F. Barlat, R. C. Becker, Y. Hayashida, Y. Maeda, M. Yanagawa, K. Chung, J.C. Brem, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, Int. J. Plast. 13, 385-401 (1997).
  • [21] A. P. Karafillis, M. C. Boyce, J. Mech. Phys. Solids 41, 1859-1886 (1993).
  • [22] W. Sumelka, M. Nowak, Int. J. Numer. Anal. Met. 40, 651-675 (2016).
  • [23] O. Cazacu, B. Plunkett, F. Barlat, Int. J. Plasticity 22, 1171-1194 (2006).
  • [24] J. Ostrowska-Maciejewska, R. B. Pęcherski, P. Szeptyński, Eng. Trans. 60, 125-138 (2012).
  • [25] W. Moćko, A. Brodecki, Mater. Design 88, 320-330 (2015).
  • [26] H. Kolsky, Proc. Phys. Soc. 62B, 647-700 (1949).
  • [27] G. H. Staab, A. A. Gilat, Exp. Mech. 31, 232-235 (1991).
  • [28] W. Moćko, A. Brodecki, J. Radziejewska, J. Strain Analysis 50, 571-58 (2015).
  • [29] W. Moćko, Metrol. Meas. Syst. 20, 555-564 (2013).
  • [30] W. I. Lankford, S. C. Snyder, J. A. Bauscher, Transaction ASM 42, 1196-1232 (1950).
  • [31] A. Rusinek, J. R. Klepaczko, Int. J. Plast. 17, 87-115 (2001).
  • [32] J. R. Klepaczko, A general approach to rate sensitivity and constitutive modeling of FCC and BCC metals. In: W.J. Ammann, W.K. Liu, J.A. Studer (Eds.), Impact: Effects of Fast Transient Loadings 26-27 August 1987, pp. 3-35., Rotterdam: A.A. Balkema 1988.
  • [33] R. Kapoor, S. Nemat-Nasser, Metall. Mater. Trans. 31A, 15-823 (2000).
  • [34] M. Huang, P. Rivera-Diaz-del-Castillo, O. Bouaz, S. van der Zwaag, Mech. Mater. 41, 982-988 (2009).
  • [35] W. Sumelka, T. Łodygowski, J. Eng. Mater.-T ASME 135, 021009 (2013).
  • [36] D. R. Chichili, K. T. Ramesh, K. J. Hemker, Acta Mater. 46, 1025-1043 (1998).
  • [37] A. S. Khan, S. Yu, H. Liu, Int. J. Plast. 38, 14-26 (2012).
  • [38] D. A. S. Macdougall, J. Harding, J. Mech. Phys. Solids 47, 1157-1185 (1999).
Uwagi
EN
1. This study was supported by the Polish National Centre for Research and Development (GRAF-TECH/NCBR/14/26/2013)
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-689edca5-d44c-42fe-84d8-cb134e347f1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.