PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Technical Assessment of River Training Impact on the Raba River Bed Stability on the Selected Longitudinal Section

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Short assessment and prediction of movement of selected Raba river sections in Southern Poland, using the existing, historical sources is presented in this paper. It was done to the most practicable extent, with regard to the river training structures as groynes and revetments stability structures. The old maps (almost non-existent) and/or aerial photographs of the selected areas and the archival projects of technical Raba river channel regulation were complemented with specific stream power and bed shear stress. In the 8.2 km long study area, four specific sections were studied in the current paper. The general trends over the last fifty years included artificial narrowing of the active channel width with uniform riverbed longitudinal slope. The current studies lead to the conclusion that the narrowed river channel tend to restoring its previous state. However, throughout each analyzed section, the channel-forming processes are varied, mostly related to restoring the local natural longitudinal slope. In Section-1, the process of sediment deposition was observed and it continues till now. In Section-2, the channel-forming processes were carried out with high intensity with tendency to rebuild its previous braided course. Currently, this tendency is continuing. The third Section seems to be the most stable after the river training works. In Section-4 the process of high erosion, especially of the left bank, is observed. The results of the analysis lead to the conclusion that more comprehensive investigation is needed of the whole 8.2-km long reach to assess the river state.
Rocznik
Strony
145--155
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Institute of Water Engineering and Water Management, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
  • Institute of Water Engineering and Water Management, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Ashmore P. 2001. Braiding phenomena: statics and kinetics. In Gravelbed Rivers V, Mosley MP (ed.). New Zealand Hydrological Society: Wellington; 95–121.
  • 2. Bagnold, R.A., 1980. An empirical correlation of bedload transport rates in flumes and natural rivers. Proc. R. Soc. Lond. A 372 (1751), 453–473.
  • 3. Bertoldi W, Zanoni L, Tubino M. 2009. Planform dynamics of braided streams. Earth Surface Processes and Landforms 34: 547–557.
  • 4. Bledsoe, B.P., Watson, C.C., Biedenham, D.S., 2002. Quantification of incised channel evolution and equilibrium. J. Am. Water Resour. Assoc. 38, 861–870.
  • 5. Brasington J, Langham J, Rumsby BT. 2003. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53: 299–316.
  • 6. Brasington J, Rumsby BT, Mcvey RA. 2000. Monitoring and modeling morphological change in a braided gravel – bed river using high resolution GPS – based survey. Earth Surface Processes and Landforms 25: 973–990.
  • 7. Bravard, J.-P., Kondolf, G.M., Piegay, H., 1999. Environmental and societal effects of channel incision and remedial strategies. Incised River Channels: Processes, Forms, Engineering and Management. Wiley, pp. 303–341.
  • 8. Brookes, A., 1987. River channel adjustments downstream from channelization works in England and Wales. Earth Surf. Process. Landf. 12, 337–351.
  • 9. Carbonneau PE, Lane SN, Bergeron NE. 2004. Catchment-scale mapping of surface grain size in gravel bed rivers using airborne digital imagery. Water Resources Research.
  • 10. Egozi R, Ashmore P. 2009. Experimental analysis of braided channel response to increased discharge. Journal of Geophysical Research –Earth Surface 114: F02012.
  • 11. Ferguson R, Ashmore P, Ashworth P, Paola C, Prestegaard K. 1992. Measurements in a braided river chute and lobe. I: Flow pattern, sediment transport and channel change. Water Resources Research 8: 1877–1886.
  • 12. Gomez B. 1991. Bedload transport. Earth Science Reviews 31: 89–132.
  • 13. Lane SN, Chandler JH, Richards KS. 1994. Developments in monitoring and terrain modelling of small – scale river bed topography. Earth Surface Processes and Landforms 19: 349–368.
  • 14. Legleiter C.J. 2013, Mapping river depth from publicly available aerial images, River Res. Applic. 29: 760–780.
  • 15. Lisle, T.E. 2005. Bed mobility: A key linkage between channel condition and lotic ecosystems. Eos, Transactions of the American Geophysical Union 86: Joint Assembly Supplement, Abstract B44B-01.
  • 16. May, C.L., Pryor, B., Lisle, T.E., and Lang, M. 2009. Coupling hydrodynamic modeling and empirical measures of bed mobility to predict the risk of scour and fill of salmon redds in a large regulated river. Water Resources Research 45: W05402.
  • 17. Meyer-Peter, E. and Müller, R., 1948. Formulas for bed-load transport, Report on second meeting of IARH. IAHR, Stockholm, Sweden, pp. 39–64.
  • 18. Mosley, M. P. (1982), Analysis of the effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River, New Zealand, Water Resour. Res., 18, 800–812.
  • 19. Nelson, P.A., Venditti, J.G., Dietrich, W.E. et al. 2009. Response of bed surface patchiness to reductions in sediment supply. Journal of Geophysical Research-Earth Surface 114: F02005.
  • 20. Parker, C., Clifford, N.I., Thorne, C.R., 2011. Understanding the influence of slope on the threshold of coarse grain motion: revisiting critical stream power. Geomorphology 126, 51–65.
  • 21. Peirce S., Ashmore P., Ledux P. 2018. The variability in the morphological active width: Results from physical models of gravel-bed braided rivers, Earth Surf. Process. Landforms 43, 2371–2383.
  • 22. Radecki-Pawlik A., 2002. Bankfull discharge in mountain streams: theory and practice. Earth Surface Processes and Landforms. Vol. 27. Iss. 2 p. 115–123.
  • 23. Reinfelds, I., Cohen, T., Batten, T., Brierley, G., 2004. Assessment of downstream trends in channel gradient, total and specific stream power: a GIS approach. Geomorphology 60, 403–416.
  • 24. Rumsby BT, Brasington J, Langham JA, McLelland SJ, Middleton R, Rollinson G. 2008. Monitoring and modelling particle and reach scale morphological change in gravel – bed rivers: applications and challenges. Geomorphology 93: 40–54.
  • 25. Stevens, M.A., Simons, D.B. and Richardson, E.V. 1975. Nonequilibrium river form. American Society of Civil Engineers, Journal of the Hydraulics Division 101: 557–566. Technical Projects:
  • 26. Projekt regulacji rzeki Raby od km 84+300 – 78+514 m. Pcim – Stróża, Projekt techniczny: TD235/67, Okręgowy Zarząd Wodny Krakowie, (Egz. Arch – Państwowe Gospodarstwo Wody Polskie – RZGW – Kraków). (in Polish).
  • 27. Umocnienie brzegów koryta od km 81+250 – 82+150, Projekt techniczny: ID-225/203/73, Przedsiębiorstwo Budownictwa Wodnego w Krakowie, Pracownia Projektowa, (Egz. Arch – Państwowe Gospodarstwo Wody Polskie – RZGW – Kraków). (in Polish).
  • 28. Regulacja rzeki Raby w km 78+240 – 80+200, Projekt techniczny: UP2/76, Przedsiębiorstwo Budownictwa Wodnego w Krakowie, Pracownia Projektowa, (Egz. Arch – Państwowe Gospodarstwo Wody Polskie – RZGW – Kraków). (in Polish).
  • 29. Rzeka Raba od km 83+300 – 84+200 w miejscowości Pcim, Projekt techniczny: OK.-1226/P/82, Hydroprojekt – Kraków, Egz. Arch – Państwowe Gospodarstwo Wody Polskie – RZGW – Kraków). (in Polish).
  • 30. Projekt techniczny regulacji rzeki Raby w km 81+8840 – 80+900, Kraków 1987, (Egz. Arch – Państwowe Gospodarstwo Wody Polskie – RZGW – Kraków). (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-689df299-6edb-4750-94e7-c14baef9ff06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.