PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Bacterial community structure influenced by Coscinodiscus sp. in the Vistula river plume

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Gulf of Gdańsk is influenced by freshwater inflow from the River Vistula and by a wind-driven current along the coast. Bacterial communities from five stations along a salinity gradient were sampled during one day and analysed by terminal restriction fragment length polymorphism (T-RFLP), catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) and 16S rRNA gene libraries. On the day of sampling, we observed a probable current-driven seawater influx into the inner part of the gulf that separated the gulf into distinct water bodies. Members of the diatom Coscinodiscus sp. dominated one of these water bodies and influenced the bacterial community. The coexistence of typically freshwater and marine bacterioplankton populations in the Vistula river plume suggested an integration of some freshwater populations into the Baltic Sea bacterioplankton.
Czasopismo
Rocznik
Strony
825--856
Opis fizyczny
Bibliogr. 78 poz., mapki, tab., wykr.
Twórcy
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81–332 Gdynia, Poland
autor
  • Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D–28359 Bremen, Germany
  • DSMZ German Collection of Microorganisms and Cell Cultures , Inhoffenstr. 7b, D–38124 Braunschweig, Germany
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81–332 Gdynia, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81–332 Gdynia, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81–332 Gdynia, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81–332 Gdynia, Poland
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81–332 Gdynia, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Department of Water Protection Engineering, ul. R. Prawocheńskiego 1, 10–720 Olsztyn, Poland
autor
  • Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D–28359 Bremen, Germany
Bibliografia
  • [1]. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I., 2003, Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats, Appl. Environ. Microb., 69 (9), 5051-5059, http://dx.doi.org/10.1128/AEM.69.9.5051-5059.2003
  • [2]. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D.A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Appl. Environ. Microb., 56, 1919-1925.
  • [3]. Amann R., Fuchs B.M., 2008, Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques, Nature, 6, 339-348.
  • [4]. Ameryk A., Podgórska B., Witek Z., 2005, The dependence between bacterial production and environmental conditions in the Gulf of Gdańsk, Oceanologia, 47 (1), 27-45.
  • [5]. Amin S.A., Parker M. S., Armbrust E.V., 2012, Interactions between diatoms and bacteria, Microbiol. Mol. Biol. Rev., 76 (3), 667-684, http://dx.doi.org/10.1128/MMBR.00007-12
  • [6]. Andersson A. F., Riemann L., Bertilsson S., 2010, Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities, ISME J., 4, 171-181, http://dx.doi.org/10.1038/ismej.2009.108
  • [7]. Azam F., Fenchel T., Field J.G., Gray J. S., Meyer-Reil L.A., Thingstad F., 1983, The ecological role of water-column microbes in the Sea, Mar. Ecol.-Prog. Ser., 10, 257-263, http://dx.doi.org/10.3354/meps010257
  • [8]. Björnsen P. K., 1986, Automatic determination of bacterioplankton biomass by image analysis, Appl. Environ. Microb., 51 (6), 1199-1204.
  • [9]. BMEPC, 1988, Guidelines for the Baltic Monitoring Programme for the third stage, Balt. Mar. Environ. Prot. Comm., Helsinki, 1-161.
  • [10]. Boström K.H., Simu K., Hagström Å., Riemann L., 2004, Optimization of DNA extraction for quantitative marine bacterioplankton community analysis, Limnol. Oceanogr.-Meth., 2, 365-373, http://dx.doi.org/10.4319/lom.2004.2.365
  • [11]. Bouvier T.C., del Giorgio P.A., 2002, Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries, Limnol. Oceanogr., 47 (2), 453-470, http://dx.doi.org/10.4319/lo.2002.47.2.0453
  • [12]. Buchan A., González J.M., MoranM.A., 2005, Overview of the marine Roseobacter lineage, Appl. Environ. Microb., 71 (10), 5665-5677, http://dx.doi.org/10.1128/AEM.71.10.5665-5677.2005
  • [13]. Campbell B. J., Kirchman D. L., 2013, Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient, ISME J., 7, 210-220, http://dx.doi.org/10.1038/ismej.2012.93
  • [14]. Clarke K.R., 1993, Non-parametric multivariate analyses of changes in community structure, Aust. J. Ecol., 18 (1), 117-143, http://dx.doi.org/10.1111/j.1442-9993.1993.tb00438.x
  • [15]. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed- Mohideen A. S., McGarrell D.M., Marsh T., Garrity G.M., Tiedje J.M., 2009, The Ribosomal Database Project: improved alignments and new tools for rRNA analysis, Nucleic Acids Res., 37 (S1), D141-D145, http://dx.doi.org/10.1093/nar/gkn879
  • [16]. Collins T. J., 2007, ImageJ for microscopy, BioTechniques, 43 (Suppl. 1), 25-30.
  • [17]. Cottrell M.T., Kirchman D. L., 2003, Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary, Limnol. Oceanogr., 48 (1), 168-178, http://dx.doi.org/10.4319/lo.2003.48.1.0168
  • [18]. Crump B.C., Hopkinson C. S., Sogin M. L., Hobbie J.E., 2004, Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time, Appl. Environ. Microb., 70 (3), 1494-1505, http://dx.doi.org/10.1128/AEM.70.3.1494-1505.2004
  • [19]. Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M., 1999, The domainspecific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set, Syst. Appl. Microbiol., 22 (2), 434-444, http://dx.doi.org/10.1016/S0723-2020(99)80053-8
  • [20]. Dang H., Li T., Chen M., Huang G., 2008, Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperature coastal marine waters, Appl. Environ. Microb., 74 (1), 52-60, http://dx.doi.org/10.1128/AEM.01400-07
  • [21]. DeSantis T. Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G. L., 2006, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microb., 72 (7), 5069-5072, http://dx.doi.org/10.1128/AEM.03006-05
  • [22]. Dixon P., 2003, VEGAN, a package of R functions for community ecology, J. Veg. Sci., 14 (6), 927-930, http://dx.doi.org/10.1111/j.1654-1103.2003.tb02228.x
  • [23]. Dunalska J.A., Górniak D., Jaworska B., Evelyn E., Gaiser E.E., 2012, Effect of temperature on organic matter transformation in a different ambient nutrient availability, Ecol. Eng., 49, 27-34, http://dx.doi.org/10.1016/j.ecoleng.2012.08.023
  • [24]. Edler L., 1979, Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll, Balt. Mar. Biol. Publ., 5, 1-38.
  • [25]. Eilers H., Pernthaler J., Peplies J., Glöckner F. O., Gerdts G., Amann R., 2001, Isolation of novel pelagic bacteria from the German Bight and their seasonal contributions to surface picoplankton, Appl. Environ. Microb., 67 (11), 5134-5142, http://dx.doi.org/10.1128/AEM.67.11.5134-5142.2001
  • [26]. Evans C.A., O'Reilly J. E., Thomas J.P., 1987, A handbook for measurement of chlorophyll a and primary productivity, BIOMASS Sci., 8, 114 pp.
  • [27]. Fukushima T., Park J., Imai A., Matsushige K., 1996, Dissolved organic carbon in a eutrophic lake; dynamics, biodegradability and origin, Aquat. Sci., 58 (2), 139-157, http://dx.doi.org/10.1007/BF00877112
  • [28]. Grasshoff K., Erhardt M., Kremling K. (eds.), 1983, Methods of sea water analysis, Verlag Chemie, Weinheim, 63-97, 127-187.
  • [29]. Hahnke R. L., Probian C., Fuchs B.M., Harder J., 2013, Variations of pelagic bacterial communities in the North Atlantic Ocean coincide with water bodies, Aquat. Microbiol. Ecol., 71 (2), 131-140, http://dx.doi.org/10.3354/ame01668
  • [30]. HELCOM, 1988, Guidelines for the Baltic Monitoring Programme for the third stage: Part D, Biological determinands, Balt. Sea Environ.t Proc., 27D, 1-161.
  • [31]. HELCOM, 2001, Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects. Annex C-6: Phytoplankton species composition, abundance and biovolume, Baltic Marine Environment Protection Commission, Helsinki, http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/en_GB/annex6/
  • [32]. HELCOM, 2004, The fourth Baltic Sea pollution load compilation (PLC-4), Balt. Sea Environ. Proc., 93, 188 pp.
  • [33]. Herlemann D. P.R., Labrenz M., Jürgens K., Bertilsson S., Waniek J. J., Andersson A. F., 2011, Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571-1579, http://dx.doi.org/10.1038/ismej.2011.41
  • [34]. Herlemann D. P.R., Lundin D., Labrenz M., Jürgens K., Zheng Z., Aspeborg H., Andersson A. F., 2013, Metagenomic de novo assembly of an aquatic representative of the Verrucomicrobial class Spartobacteria, mBio, 4 (3), http://dx.doi.org/10.1128/mBio.00569-12
  • [35]. Holmfeldt K., Dziallas C., Titelman J., Pohlmann K., Grossart H.-P., Riemann L., 2009, Diversity and abundance of freshwater Actinobacteria along environmental gradients in the brackish northern Baltic Sea, Environm. Microbiol., 11 (8), 2042-2054, http://dx.doi.org/10.1111/j.1462-2920.2009.01925.x
  • [36]. Hoppe H.-G., Giesenhagen H.C., Gocke K., 1998, Changing patterns of bacterial substrate decomposition in a eutrophication gradient, Aquat. Microb. Ecol., 15 (1), 1-13, http://dx.doi.org/10.3354/ame015001
  • [37]. Hoppe H-G., Gocke K., Koppe R., Begler C., 2002, Bacterial growth and primary production along a north-south transect of the Atlantic Ocean, Nature, 416, 168-171, http://dx.doi.org/10.1038/416168a
  • [38]. Huber T., Faulkner G., Hugenholtz P., 2004, Bellerophon: a program to detect chimeric sequences in multiple sequence alignments, Bioinformatics, 20 (14), 2317-2319, http://dx.doi.org/10.1093/bioinformatics/bth226
  • [39]. Jędrasik J., Cieślikiewicz W., Kowalewski M., Bradtke K., Jankowski A., 2008, 44 years hindcast of the sea level and circulation in the Baltic Sea, Coast. Eng., 55 (11), 849-860, http://dx.doi.org/10.1016/j.coastaleng.2008.02.026
  • [40]. Kirchman D., Knees E., Hodson R., 1985, Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems, Appl. Environ. Microb., 49 (3), 599-607.
  • [41]. Kirchman D. L., Dittel A. I., Malmstrom R.R., Cottrell M.T., 2005, Biogeography of major bacterial groups in the Delaware Estuary, Limnol. Oceanogr., 50 (5), 1697-1706, http://dx.doi.org/10.4319/lo.2005.50.5.1697
  • [42]. Kowalewski M., Kowalewska-Kalkowska H., 2011, Performance of operationally calculated hydrodynamic forecasts during storm surges in the Pomeranian Bay and Szczecin Lagoon, Boreal Env. Res., 16 (Suppl. A), 27-41.
  • [43]. Kownacka J., Gromisz S., 2011, Semi-decade dynamic of the summer phytoplankton community from the southern Baltic Proper, ICES Annual Science Conferences, 19-23 September, Gdańsk, poster.
  • [44]. Langenheder S., Kisand V., Lindstrom E. S., Wikner J., Tranvik L. J., 2004, Growth dynamics within bacterial communities in riverine and estuarine batch cultures, Aquat. Microb. Ecol., 37 (2), 137-148, http://dx.doi.org/10.3354/ame037137
  • [45]. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 15 (4), 593-600, http://dx.doi.org/10.1016/S0723-2020(11)80121-9
  • [46]. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K.-H., 1996, Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment, Microbiology, 142 (5), 1097-1106, http://dx.doi.org/10.1099/13500872-142-5-1097
  • [47]. Martinez-Garcia M., Brazel D. M., Swan B.K., Arnosti C., Chain P. S.G., Reitenga K.G., Xie G., Poulton N. J., Gomez M. L., Masland D. E.D., Thompson B., Bellows W.K., Ziervogel K., Lo C-C., Ahmed S., Gleasner C.D., Detter C. J., Stepanauskas R., 2012, Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia, PLoS ONE, 7 (4), e35314, http://dx.doi.org/10.1371/journal.pone.0035314
  • [48]. Morris R.M., Rappe M. S., Connon S.A., Vergin K. L., Siebold W. A., Carlson C.A., Giovannoni S. J., 2002, SAR11 clade dominates ocean surface bacterioplankton communities, Nature, 420, 806-810, http://dx.doi.org/10.1038/nature01240
  • [49]. Musat N., Werner U., Knittel K., Kolb S., Dodenhof T., van Beusekom J.E., de Beer D., Dubilier N., Amann R., 2006, Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea, Syst. Appl. Microbiol., 29 (4), 333-348, http://dx.doi.org/10.1016/j.syapm.2005.12.006
  • [50]. Muyzer G., Teske A., Wirsen C., Jannasch H., 1995, Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments, Arch. Microbiol., 164 (3), 165-172, http://dx.doi.org/10.1007/BF02529967
  • [51]. Neef A., 1997, Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen, Ph. D. thesis, Tech. Univ., München. Olenina I., Ha jdu S., Edler L., Andersson A., Wasmund N., Busch S., Gobel J., Gromisz S., Huseby S., Huttunen M., Jaanus A., Kekkonen P., Ledaine I., Ziemkiewicz E., 2006, Biovolumes and size-classes of phytoplankton in the Baltic Sea, HELCOM Baltic Sea Environ. Proc., 106, 144 pp.
  • [52]. O'Sullivan L. A., Fuller K. E., Thomas E. M., Turley C. M., Fry J. C., Weightman A. J., 2004, Distribution and culturability of the uncultivated 'AGG58 cluster' of the Bacteroidetes phylum in aquatic environments, FEMS Microbiol. Ecol., 47 (3), 359-370, http://dx.doi.org/10.1016/S0168-6496(03)00300-3
  • [53]. Pernthaler A., Pernthaler J., Amman R., 2004, Sensitive multicolor fluorescence in situ hybridization for the identification of environmental microorganisms, [in:] Molecular microbial ecology manual, 2nd edn., G. Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. L. Akkermans & J. van Elsas (eds.), Kluwer Acad. Publ., Dordrecht, 711-126.
  • [54]. Pinhassi J., Winding A., Binnerup S. J., Zweifel U. L., Riemann B., Hagström Å., 2003, Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat Front, Mar. Ecol.-Prog. Ser., 255, 1-13, http://dx.doi.org/10.3354/meps255001
  • [55]. Piwosz K., Salcher M. M., Zeder M., Ameryk A., Pernthaler J., 2013, Seasonal population dynamics and activity of freshwater bacteria in brackish waters of the Gulf of Gdańsk, Limnol. Oceanogr., 58 (3), 817-826.
  • [56]. Pommier T., Canbäck B., Riemann L., Boström K. H., Simu K., Lundberg P., Tunlid A., Hagström Å., 2007, Global patterns of diversity and community structure in marine bacterioplankton, Mol. Ecol., 16 (4), 867-880, http://dx.doi.org/10.1111/j.1365-294X.2006.03189.x
  • [57]. Pruesse E., Peplies J., Glöckner F. O., 2012, SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes, Bioinformatics, 28 (14), 1823-1829, http://dx.doi.org/10.1093/bioinformatics/bts252
  • [58]. Ramette A., 2009, Quantitative community Fingerprinting methods for estimating the abundance of operational taxonomic unit in natural microbial communities, Appl. Environ. Microb., 75 (8), 2495-2505, http://dx.doi.org/10.1128/AEM.02409-08
  • [59]. Riemann L., Leitet C., Pommier T., Simu K., Holmfeldt K., Larsson U. Hagström Å., 2008, The native bacterioplankton community in the central Baltic Sea is influenced by freshwater bacterial species, Appl. Environ. Microb., 74 (2), 503-515. Rolff C., Elmgren R., 2000, Use of riverine organic matter in plankton food webs of the Baltic Sea, Mar. Ecol.-Prog. Ser., 197, 81-101, http://dx.doi.org/10.3354/meps197081
  • [60]. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K.-H., 1994, In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNAtargeted oligonucleotides, Microbiology, 140, 2849-2858, http://dx.doi.org/10.1099/00221287-140-10-2849
  • [61]. Rooney-Varga J.N., Giewat M.W., Savin M.C., Sood S., LeGresley M., Martin J. L., 2005, Links between phytoplankton and bacterial community dynamics in a coastal marine environment, Microb. Ecol., 49 (1), 163-175, http://dx.doi.org/10.1007/s00248-003-1057-0
  • [62]. Selje N., Simon M., Brinkhoff T., 2004, A newly discovered Roseobacter cluster in temperate and polar oceans, Nature, 427, 445-448, http://dx.doi.org/10.1038/nature02272
  • [63]. Shyu C., Soule T., Bent S. J., Foster J.A., Forney L. J., 2007, MiCA: A web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes, Microb. Ecol., 53 (4), 562-570, http://dx.doi.org/10.1007/s00248-006-9106-0
  • [64]. Simon M., Azam F., 1989, Protein content and protein synthesis rates of planktonic marine bacteria, Mar. Ecol.-Prog. Ser., 51, 201-213, http://dx.doi.org/10.3354/meps051201
  • [65]. Simu K., Hagström Å., 2004, Oligotrophic bacterioplankton with a novel single-cell life strategy, Appl. Environ. Microb., 70 (4), 2445-2451, http://dx.doi.org/10.1128/AEM.70.4.2445-2451.2004
  • [66]. Šimek K., Pernthaler J., Weinbauer M. G., Hornak K., Dolan J.R., Nedoma J., Masin M., Amann R., 2001, Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir, Appl. Environ. Microb., 67 (6), 2723-2733, http://dx.doi.org/10.1128/AEM.67.6.2723-2733.2001
  • [67]. UNESCO, 1983, Chemical methods for use in marine environmental monitoring. Manual and guides, Intergovern. Oceanogr. Comm., 12, 1-53.
  • [68]. Venables W.N., Ripley B.D., 2002, Modern applied statistics with S, Springer, New York, http://dx.doi.org/10.1007/978-0-387-21706-2
  • [69]. Wagner-Döbler I., Biebl H., 2006, Environmental biology of the marine Roseobacter lineage, Ann. Rev. Microbiol., 60, 255-280, http://dx.doi.org/10.1146/annurev.micro.60.080805.142115
  • [70]. Wallner G., Amann R., Beisker W., 1993, Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, 14, 136-143.
  • [71]. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R., 2007, Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microb., 73 (16), 5261-5267, http://dx.doi.org/10.1128/AEM.00062-07
  • [72]. Wielgat-Rychert M., Ameryk A., Jarosiewicz A., Kownacka J., Rychert K., Szymanek L., ZalewskiM., Agatova A., Lapina N., Torgunova N., 2013, Impact of the inflow of Vistula river waters on the pelagic zone in the Gulf of Gdańsk, Oceanologia, 55 (4), 859-886, http://dx.doi.org/10.5697/oc.55-4.859
  • [73]. Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea), Estuar. Coast. Shelf Sci., 57 (1-2), 239-248, http://dx.doi.org/10.1016/S0272-7714(02)00348-7
  • [74]. Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J. M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk, Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169
  • [75]. Wright E. S., Yilmaz L. S., Noguera D.R., 2012, DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences, Appl. Environ. Microb., 78 (3), 717-725, http://dx.doi.org/10.1128/AEM.06516-11
  • [76]. Zhang Y., Jiao N., Cottrell M.T., Kirchman D. L., 2006, Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea, Aquat. Microb. Ecol., 43 (3), 233-241, http://dx.doi.org/10.3354/ame043233
  • [77]. Zhang Z., Schwartz S., Wagner L., Miller W., 2000, A greedy algorithm for aligning DNA sequences, J. Comput. Biol., 7 (1-2), 203-214, http://dx.doi.org/10.1089/10665270050081478
  • [78]. Zwart G., Crump B.C., Kamst-van Agterveld M.P., Hagen F., Han S-K., 2002, Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers, Aquat. Microb. Ecol., 28 (2), 141-155, http://dx.doi.org/10.3354/ame028141
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-689d3f54-56a2-47ea-ac75-b5230e0e6af4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.