Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A study of the relative permittivity and electric strength of dielectrics printed by focus deposition modeling was presented. These electrical parameters determined the lifetime reliability of devices made of dielectrics. Samples of PLA, ABS, PETG and ASA were tested according to IEC specifications. The dependence of the electrical properties of the samples on the type of material and printing precision was observed. Relative permittivity tests were carried out in the acoustic frequency band from 20 Hz to 20 kHz. It allowed analysis in a higher band than has been done in other publications to date. The electric strength of materials at 1.2/50 μs surge voltage was examined, which has not been widely analyzed before. Weibull plots, as a basis for determining the risk of failure, were prepared. The PETG FR (flame retardant) had the highest electric strength value, while PLA had the lowest. The differences with respect to tests at AC voltage were demonstrated. The printing technique affects the electrical strength value and location of potential electrical breakdown.
Czasopismo
Rocznik
Tom
Strony
521--539
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Faculty of Electrical and Computer Engineering, Rzeszow University of Technology Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- [1] Wimpenny D.I., Pandey P.M., Kumar L.J., Advances in 3D Printing & Additive Manufacturing Technologies, Singapore: Springer Singapore (2017), DOI: 10.1007/978-981-10-0812-2.
- [2] Cano-Vicent A. et al., Fused deposition modelling: Current status, methodology, applications and future prospects, Additive Manufacturing, vol. 47, 102378 (2021), DOI: 10.1016/j.addma.2021.102378.
- [3] Tan H.W., Choong Y.Y.C., Kuo C.N., Low H.Y., Chua C.K., 3D printed electronics: Processes, materials and future trends, Progress in Materials Science, vol. 127, 100945 (2022), DOI: 10.1016/j.pmatsci.2022.100945.
- [4] Macdonald E. et al., 3D Printing for the Rapid Prototyping of Structural Electronics, IEEE Access, vol. 2, pp. 234–242 (2014), DOI: 10.1109/ACCESS.2014.2311810.
- [5] Wałpuski B., Słoma M., Accelerated Testing and Reliability of FDM-Based Structural Electronics, Applied Sciences, vol. 12, 1110 (2022), DOI: 10.3390/app12031110.
- [6] Grant K., Zhang S., Kettle J., Improving the sustainability of printed circuit boards through additive printing, 2023 IEEE Conference on Technologies for Sustainability (SusTech), Portland, OR, USA, 2023, pp. 86–90 (2023), DOI: 10.1109/SusTech57309.2023.10129587.
- [7] Zdráhal J., Klimtová M., Králová I., 3D Printed Circuit Boards from Recycled Plastics: Interconnection Properties, 2024 47th International Spring Seminar on Electronics Technology (ISSE), Prague, Czech Republic, pp. 1–6 (2024), DOI: 10.1109/ISSE61612.2024.10603755.
- [8] Sekula R., Immonen K., Metsa-Kortelainen S., Kuniewski M., Zydroń P., Kalpio T., Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation, Polymers (Basel), vol. 15 (2023), DOI: 10.3390/polym15112518.
- [9] Huber E., Mirzaee M., Bjorgaard J., Hoyack M., Noghanian S., Chang I., Dielectric property measurement of PLA, 2016 IEEE International Conference on Electro Information Technology (EIT), Grand Forks, ND, USA, pp. 788–792 (2016), DOI: 10.1109/EIT.2016.7535340.
- [10] Schmid A., Modrow N., Humpert C., Breakdown strength and dielectric properties of stereolithography 3D-printed dielectrics for high voltage applications, 23rd International Symposium on High Voltage Engineering (ISH 2023), Berlin, Germany, pp. 1242–1248 (2023), DOI: 10.1049/icp.2024.0794.
- [11] Veselý P., Tichý T., Šefl O., Horynová E., Evaluation of dielectric properties of 3D printed objects based on printing resolution, 5th International Conference Recent Trends in Structural Materials, Pilsen, Czech Republic (2018), DOI: 10.1088/1757-899X/461/1/012091.
- [12] Basics of Measuring the Dielectric Properties of Materials, Application Note, https://www.keysight.com.
- [13] Lisowski M., Measurements of Electrical Resistivity and Permittivity of Solid Dielectrics, Publishing House of Wrocław University of Science and Technology (in Polish), Wrocław, 2004.
- [14] Bigdeli M., Aghajanloo J., Condition assessment of transformer insulation using dielectric frequency response analysis by artificial bee colony algorithm, Archives of Electrical Engineering, vol. 65, no. 1, pp. 45–57 (2016), DOI: 10.1515/aee-2016-0004.
- [15] Uydur C.C, Assessment of Dielectric Strength for 3D Printed Solid Materials in Terms of Insulation Coordination, Applied Sciences, vol. 14, 11860 (2024), DOI: 10.3390/app142411860.
- [16] Li X.-R., Guo J., Li W.-D., Zhang L.-Y., Wang C., Guo B.-H. et al., Analysis of Morphology and Electrical Insulation of 3D Printing Parts, 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, pp. 1–4 (2018), DOI: 10.1109/ICHVE.2018.8642096.
- [17] Hajder S., Identification and Mitigation of overvoltages During Marx Generator Operation in Circuits Supplying Measurement Systems, Scientific Journals of Rzeszów University of Technology Series Electrotechnics (in Polish), vol. 28, pp. 33–49 (2022), DOI: 10.7862/re.2022.3.
- [18] IEC 60243-1:2013, Electric strength of insulating materials – Test methods – Part 1: Tests at power frequencies (2013).
- [19] IEC 62631-2-1:2018, Dielectric and resistive properties of solid insulating materials – Part 2-1: Relative permittivity and dissipation factor – Technical Frequencies (0.1 Hz – 10 MHz) – AC Methods (2018).
- [20] IEC 60243-3:2013, Electric strength of insulating materials – Test methods – Part 3: Additional requirements for 1.2/50 µs impulse tests (2013).
- [21] Verband Deutscher Elektrotechniker, DIN EN 60052:2003, Voltage measurements by means of standard air gaps (2003).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-689a70a0-e840-4f03-915e-3a8f40a911ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.