PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.
Rocznik
Strony
21--24
Opis fizyczny
Bibliogr. 17 poz., rys.
Twórcy
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Kraków, Poland
autor
  • State Higher Vocational School in Głogów, Głogów, Poland
  • Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Kraków, Poland
autor
  • State Higher Vocational School in Głogów, Głogów, Poland
Bibliografia
  • [1] Kalisz, D., Rzadkosz, S. & Piękoś, M. (2012). Computer simulation of liquid slag reduction process. Archives of Foundry Engineering. 12(spec. 1), 91-96 (in Polish).
  • [2] Czarnecki, J., Śmieszek, Z., Miczkowski, Z., Bratek, S., Kubacz, N., Ostrowski, T., Gostyński, Z. & Warmuz, M. (2006). Two-stage process of flash slag decopperisatio. Ores and Non-Ferrous Metals. 51(7), 405-411 DOI: bwmeta1. element.baztech-article-AGH6-0005-0020 (in Polish).
  • [3] Burzyńska, L., Gumowska, W., Harańczyk, I. & Żabiński, P. (2002). Some aspects of copper electrorafining process. Non-ferrous Metals. WMN AGH, 29-47 (in Polish).
  • [4] Bydałek, A.W., Bydałek, A., Wołczyński, W. & Biernat, S. (2015). The concept of slag decopperisation in the flash furnace process by use of complex reagents. Archives of Metallurgy and Materials. 60(1), 323-326. DOI: 10.1515/ amm-2015-0052.
  • [5] Łędzki, A., Migas, P., Stachura, R., Klimczyk, A. & Bernasowski, M. (2009). Dynamic viscosity of blast furnace primary and final slag with titanium and alkali admixtures. Archives of Metallurgy and Materials. 54(2), 499-509.
  • [6] Migas, P. & Karbowniczek, M. (2010). Interactions between liquid slag and graphite during the reduction of metallic oxides. Archives of Metallurgy and Materials. 55(4), 1147-1157. DOI: 10.2478/v10172-010-0018-0.
  • [7] Biernat, S. & Bydałek, A.W. (2014). Optimization of the Brass Melting. Archives of Foundry Engineering. 14(3), 5-10.
  • [8] Kucharski, M., Sak, T., Madej, P., Wędrychowicz, M. & Mróz, W. (2014). A Study on the Copper Recovery from the Slag of the Outokumpu Direct-to-Copper Process. Metallurgical and Materials Transactions B. 45(2), 590-602. DOI: 10.1007/s11663-013-9961-2.
  • [9] Gierek, A., Karwan, T., Rojek, J. & Szymek, J. (2005). Results of test with decoperisation of slag from flash process. Ores and Non-Ferrous Metals. 50(12), 669-680 (in Polish).
  • [10] Bydałek, A.W., Biernat, S., Bydałek, A. & Schlafka, P. (2014). The Innovative Analysis of the Refinement Ability Exstractive Slag. International Journal of Engineering and Innovative Technology. 4(5), 186-197. ISSN: 2277-3754.
  • [11] Biernat, S., Bydałek, A.W. & Schlafka, P. (2012). Analysis of the possibility of estimation ecological slag propriety with use the DATA Base. Metalurgija-Metallurgy. 51(1), 59-62.
  • [12] Kowalczyk, J., Mróz, M., Warczok, A. & Utigard, T.A. (1995). Viscosity of copper slags from chalcocite concentrate smelting. Metallurgical and Materials Transactions B. 26(1), 1217-1223. DOI: 10.1007/BF0265 4007.
  • [13] Bydałek, A.W. (2011). Role of carbon in the melting copper processes. Archives of Foundry Engineering. 11(spec. 3), 37-42.
  • [14] Wołczyński, W., Himemiya, T., Kopyciński, D. & Guzik, E. (2006). Solidification and solid/liquid interface paths for the formation of protective coatings. Archives of Foundry. 18(1/2), 359-362.
  • [15] Wołczyński, W. (2010). Constrained/unconstrained solidification within the massive cast steel/iron ingots. Archives of Foundry Engineering. 10(2), 195-202.
  • [16] Wołczyński, W. (2015). Mathematical Modeling of the Microstructure of Large Steel Ingots. Entry in: The Encyclopedia of Iron, Steel, and Their Alloys. New York, USA: Eds. Taylor & Francis Group, (in print).
  • [17] Migas, P. (2015). Analysis of the rheological behaviour of selected semi-solid slag systems in blast furnace flow conditions. Archives of Metallurgy and Materials. 60(1), 85-93. DOI: 10.1515/amm-2015-0014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-689611a4-69ae-4005-a410-720c87fb493f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.