PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of Physical Parameters of a Porous Material Located in a Duct by Inverse Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lined ducts with porous materials are found in many industrial applications. To understand and simulate the acoustic behaviour of these kinds of materials, their intrinsic physical parameters must be identified. Recent studies have shown the reliability of the inverse approach for the determination of these parameters. Therefore, in the present paper, two inverse techniques are proposed: the first is the multilevel identification method based on the simplex optimisation algorithm and the second one is based on the genetic algorithm. These methods are used of the physical parameters of a simulated case of a porous material located in a duct by the computation of its acoustic transfer, scattering, and power attenuation. The results obtained by these methods are compared and discussed to choose the more efficient one.
Rocznik
Strony
657--665
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Mechanics, Modeling and Productivity (LA2MP) National School of Engineers of Sfax, University of Sfax Tunisia
  • Faculty of Sciences of Sfax, University of Sfax Tunisia
autor
  • Laboratory of Mechanics, Modeling and Productivity (LA2MP) National School of Engineers of Sfax, University of Sfax Tunisia
  • Laboratory of Mechanics, Modeling and Productivity (LA2MP) National School of Engineers of Sfax, University of Sfax Tunisia
  • Faculty of Sciences of Sfax, University of Sfax Tunisia
  • Faculty of Sciences of Sfax, University of Sfax Tunisia
  • Laboratory of Mechanics, Modeling and Productivity (LA2MP) National School of Engineers of Sfax, University of Sfax Tunisia
Bibliografia
  • 1. Alba J., delRey R., Ramis J., Arenas J.P. (2011), An inverse method to obtain porosity, fiber diameter and density of fibrous sound absorbing materials, Archives of Acoustics, 36(3): 561-574, doi: 10.2478/v10168-011-0040-x.
  • 2. Allard J.F., Champoux Y. (1992), New empirical equations for sound propagation in rigid frame fibrous materials, The Journal of the Acoustical Society of America, 91(6): 3346-3353, doi: 10.1121/1.402824.
  • 3. Allard J.F., Attalla N. (2009), Propagation of Sound in Porous Media, Wiley.
  • 4. Attenborough K. (1983), Acoustical characteristics of rigid porous absorbents and granular materials, The Journal of the Acoustical Society of America, 73(3): 85-99, doi: 10.1121/1.389045.
  • 5. Attalla Y., Panneton R. (2005), Inverse acoustical characterization of open cell porous media using impedance tube measurements, Canadian Acoustics, 33(1): 11-24.
  • 6. Attenborough K. (1987), On the acoustic slow wave in air-filled granular media, The Journal of the Acoustical Society of America, 81 (1): 93-102, doi: 10.1121/1.394938.
  • 7. Benjdidia M., Akrout A., Taktak M., Hammami L., Haddar M. (2014), Thermal effect on the acoustic behavior of an axisymmetric lined duct, Applied Acoustics, 86: 138-145, doi: 10.1016/j.apacoust.2014.03.004.
  • 8. Ben Souf M.A., Kessentini A., Bareille O., Taktak M., Ichchou M.N., Haddar M. (2017), Acoustical scattering identification with local impedance through a spectral approach, Compte Rendus Mécanique, 345(5): 301-316, doi: 10.1016/j.crme.2017.03.006.
  • 9. Bérengier M., Stinson M.R., Daigle G.A., Hamet J.F. (1997), Porous road pavements: acoustical characterization and propagation effects, The Journal of the Acoustical Society of America, 101(1): 155-162, doi: 10.1121/1.417998.
  • 10. Chazot J.D., Zhang E., Antoni J. (2012), Characterization of poroelastic materials with a Bayesian approach, The Journal of the Acoustical Society of America, 131(6): 4584-4595, doi: 10.1121/1.3699236.
  • 11. Delany M.E., Bazley E.N. (1970), Acoustical properieties of fibrous absorbent materials, Applied Acoustics, 3: 105-116, doi: 10.1016/0003-682X(70)90031-9.
  • 12. Dhief R., Makni A., Taktak M., Chaabane M., Haddar M. (2020), Investigation on the effects of acoustic liner variation and geometry discontinuities on the acoustic performance of lined ducts, Archives of Acoustics, 45(1): 49-66, doi: 10.24425/aoa.2020.132481.
  • 13. Garoum M., Simon F. (2005), Characterization of non-consolidated cork crumbs as a basic sound absorber raw material, [in:] 12th International Congress on Sound and Vibration, Lisbon, Portugal.
  • 14. Garoum M., Tajayouti M. (2007) Inverse estimation of non acoustical parameters of absorbing materials using genetic algorithms, [in:] 19th International Congress on Acoustics, Madrid, Spain.
  • 15. Goldberg D. (1989), Genetic Algorithms for Search, Optimization and Machine Learning, Addison-Wesley, Reading.
  • 16. Hamet J.F., Bérengier M. (1993), Acoustical characteristics of porous pavements - a new phenomenological model, [in:] Inter-Noise ‘93, Leuven, Belgium.
  • 17. Hentati T., Bouazizi L., Taktak M., Trabelsi H., Haddar M. (2016), Multi-levels inverse identification of physical parameters of porous materials, Applied Acoustics, 108: 26-30, doi: 10.1016/j.apacoust.2015.09.013.
  • 18. Hess H.M., Attenborough K., Heap N.W. (1990), Ground characterization by short-range propagation measurements, The Journal of the Acoustical Society of America, 87(5): 1975-1986, doi: 10.1121/1.399325.
  • 19. Johnson D.L., Koplik J., Dashen R. (1987), Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, 176: 379-402, doi: 10.1017/S0022112087000727.
  • 20. Kani M. et al. (2019), Acoustic performance evaluation for ducts containing porous material, Applied Acoustics, 147: 15-22, doi: 10.1016/j.apacoust.2018.08.002.
  • 21. Kessentini A.,Taktak M., Ben Souf M.A., Bareille O., Ichchou M.N., Haddar M. (2016), Computation of the scattering matrix of guided acoustical propagation by the Wave Finite Elements approach, Applied Acoustics, 108: 92-100, doi: 10.1016/j.apacoust.2015.09.004.
  • 22. Lafarge D., Lemarinier P., Allard J.F. (1997), Dynamic compressibility of air in porous structures at audible frequencies, The Journal of the Acoustical Society of America, 102(4): 1995-2006, doi: 10.1121/1.419690.
  • 23. Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. (1998), Convergence properties of the Nelder-Mead Simplex method in low dimensions, SIAM Journal of optimization, 9(1): 112-147, doi: 10.1137/S1052623496303470.
  • 24. Leclaire P., Kelders L., Lauriks W., Melon M., Brown N., Castagnède B. (1996), Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air, Journal of Applied Physics, 80(4): 2009-2012, doi: 10.1063/1.363817.
  • 25. Mareze P.H., Lenzi A. (2011), Characterization and optimization of rigid - frame porous material, [in:] 18th International Congress on Sound and Vibration, Rio De Janeiro, Brazil.
  • 26. Masmoudi A., Makni A., Taktak M., Haddar M. (2017), Effect of geometry and impedance variation on the acoustic performance of a porous material lined duct, Journal of Theoretical and Applied Mechanics, 55(2): 679-694, doi: 10.15632/jtam-pl.55.2.679.
  • 27. Miki Y. (1990), Acoustical properties of porous materials - modifications of Delany-Bazley models, Journal of the Acoustical Society of Japan, 11(1): 19-24, doi: 10.1250/ast.11.19.
  • 28. Othmani C., Hentati T., Taktak M., Elnady T., Fakhfakh T., Haddar M. (2015), Effect of liner characteristics on the acoustic performance of duct systems, Archives of Acoustics, 40(1): 117-127, doi: 10.1515/aoa-2015-0014.
  • 29. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027-2040, doi: 10.1121/1.2169923.
  • 30. Sellen N, Galland MA, Hilberunner O. (2020), Identification of the characteristic parameters of porous media using active control, [in:] 8th AIAA/CEAS Aeroacoustics Conference, USA.
  • 31. Shravage P., Bonfiglio P., Pompoli F. (2008), Hybrid inversion technique for predicting geometrical parameters of porous materials, [in:] Acoustics’ 08, Paris, France, pp. 2545-2549.
  • 32. Taktak M., Ville J.M., Haddar M., Gabard G., Foucart F. (2010), An indirect method for the characterization of locally reacting liners, The Journal of the Acoustical Society of America, 127(6): 3548-3559, doi: 10.1121/1.3365250.
  • 33. Ying H. (2010), Development of passive/active hybrid panels for acoustics [in French: Développement de panneaux hybrides passifs/actifs pour l'acoustique], Phd Thesis, Ecole Centrale de Lyon.
  • 34. Zielinski T.G. (2012), Inverse identification and microscopic estimation of parameters for models of sound absorption in porous ceramics, [In:] International Conference on Noise and Vibration Engineering/International Conference on Uncertainty in Structural Dynamics, 17-19 September, Leuven, Belgium.
  • 35. Zielinski T.G. (2014), A methodology for a robust inverse identification of model parameters for porous sound absorbing materials, [In:] International Conference on Noise and Vibration Engineering/International Conference on Uncertainty in Structural Dynamics, 15-17 September, Leuven, Belgium.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6893ead5-7613-41c3-86c5-1079d8e587f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.