PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of flexible printed sensors for automotive infotainment systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automobiles today are propelled by a variety of technologies that can be divided into three categories: safety, infotainment, and powertrain. The automobile industry is currently placing a high value on vehicle electronics and ergonomics in order to meet the needs of customers and to prepare for future applications. Flexible printed sensors are becoming increasingly popular in the automotive industry, owing to their high production rates, flexibility, and ability to accommodate complex geometries. Since the capacitive flexible printed sensors require many improvements to improve the performance measures in all aspects of the process. It was discovered that there were only a few research works accessible for the design and fabrication of suitable flexible sensors for automotive information and entertainment systems. Several researchers concluded that just a few studies had been conducted on the application of optimization algorithms in the design and fabrication of flexible printed capacitive sensors for the IVI bezel. Research attention has only been focused on investigating the impact of electrode parameters and sensor pattern on the performance of sensors in a limited number of studies.
Słowa kluczowe
Rocznik
Strony
art. no. e67, 2023
Opis fizyczny
Bibliogr. 116 poz., rys., tab.
Twórcy
  • Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, TN 603203, India
  • Department of Mechatronics Engineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, TN 603203, India
  • Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University, Tanta 31527, Egypt
Bibliografia
  • 1. Joao P. Trovao, “trends in automotive electronics.” IEEE Veh Technol Mag. 2019. https://doi.org/10.1109/MVT.2019.2939757.
  • 2. Fleming B. Trends in automotive electronics. IEEE Veh Technol Mag. 2012. https://doi.org/10.1109/MVT.2012.2218144. (1556-6072/12).
  • 3. Coppola R, Morisio M. Connected car: technologies, issues, future trends. ACM Comput Surv. 2017;49(46):1-36. https://doi.org/10.1145/2971482.
  • 4. Eyben F, Wollmer M, Poitschke T, Schuller B, Blaschke C, Farber B, Nguyen-Thien N. Emotion on the road-necessity, acceptance, and feasibility of affective computing in the car. Adv Human-Comput Interact. 2010. https://doi.org/10.1155/2010/263593. (Article ID 263593).
  • 5. Bubb H. Fahrerassistenz “Primarein Beitragzum Komfortoderfur die Sicherheit”, VDI-Berichte., 1768, Der Fahrerim 21. Jahrhundert, Dusseldorf, VDI-Verlag, S. pp. 25-45. 2003.
  • 6. Alm H, Nilsson L. The effects of a mobile telephone task on driver behaviour in a car following situation. Accid Anal Prev. 1995;27(5):707-15.
  • 7. Saifuzzaman M. MdMazharulHaque, Zuduo Zheng and Simon Washington, “impact of mobile phone use on car-following behaviour of young drivers.” Accid Anal Prev. 2014. https://doi.org/10.1016/j.aap.2015.05.001.
  • 8. Michael Rakauskas E, Leo Gugerty J, Nicholas Ward J. Effects of naturalistic cell phone conversations on driving performance. J Saf Res. 2004;35:453-64.
  • 9. Gellatly AW, Hansen C, Highstrom M, Weiss JP “Journey: general motors’ move to incorporate contextual design into its next generation of automotive HMI designs.” In Proceedings of the International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’10). p. 156-161, ACM Press. 2010.
  • 10. Heinrich C. “Automotive HMI International Standards,” Daimler AG. 2012.
  • 11. Ani Heikkinen J, Makinen E, Lylykangas J, Pakkanen T, Vaananen-Vainio Mattila K, Raisamo R. “Mobile devices as infotainment user interfaces in the car: contextual study and design implications.” International Conference on Human-Computer Interaction with Mobile Devices and Services. 2013. p. 137-144.
  • 12. Pandey R, Sharma M, Manocha P “Implementation of interior fitting regulation (ECE R21) In India: Common Failures and Countermeasures in Instrument Panel Development,” SAE International in United States, Technical Paper 2009-01-0053. 2009. https://doi.org/10.4271/2009-01-0053.
  • 13. ISO 15005: International organization for standardization, “Road vehicles-Ergonomic aspects of transportation and control systems-Dialogue management principles and compliance procedures” Technical report. 2017.
  • 14. ISO 3958: International Organization for Standardization, “Passenger cars-Driver hand-control reach.” Technical report. 1996.
  • 15. ISO 15008: International Organization for Standardization, “Road vehicles-Ergonomic aspects of transport information and control systems-Specifications and test procedures for invehicle visual presentation,” Technical report. 2017.
  • 16. ISO 4040: International Organization for Standardization, “Road vehicles-Location of hand controls, indicators and tell-tales in motor vehicles ,” Technical report. 2009.
  • 17. ISO 2575: International Organization for Standardization, “Road vehicles-Symbols for controls, indicators and tell-tales,” Technical report. 2009.
  • 18. European Telecommunications Standards Institute, “Human Factors ,” Technical report., ETSI TR 102 762. 2010.
  • 19. Technical Report “Automotive UI (2020).Technical report 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications ACM SIGCHI.
  • 20. Virtual (was: Washington, DC, USA), September 20-22. 2020.
  • 21. Christopher Wickens D. Multiple resources and performance prediction. Theor Issues Ergonom Sci. 2022;3(2):159-77. https://doi.org/10.1080/14639220210123806.
  • 22. Jeon M, Davison BK, Nees MA, J Wilson, Walker BN. “Enhanced Auditory menu cues improve dual task performance and are preferred with in-vehicle technologies.” Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany. 2009.
  • 23. Mohebbi R, Gray R. Driver reaction time to tactile and auditory rear-end collision warnings while talking on a cell phone. J Hum Factors Ergonom Soc. 2009. https://doi.org/10.1177/0018720809333517.
  • 24. Diwischek L, Lisseman J. “Tactile feedback for virtual automotive steering wheel switches.” Proceedings of the ACM on Human-Computer Interaction, Automotive UI '15. ACM. ISBN 978-1-4503-3736-6/15/09. 2015. https://doi.org/10.1145/2799250.2799271.
  • 25. Politis I, Brewster S, Pollick F. “Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ‚13),” Evaluating Multimodal Driver Displays of Varying Urgency. ACM 978-1-4503-2478-6/13/10. 2013. https://doi.org/10.1145/2516540.2516543.
  • 26. Jadhav AM, Bhanuse KA, Lokhande CS, Pujari AA, “Data transfer through human body using redtacton.” Int J Res Emerg Sci Technol. 3(3). 2016.
  • 27. Pitts MJ, Burnett GE, Williams MA, Wellings T “Does haptic feedback change the way we view touchscreens in cars?” ICMIMLMI ‘10: International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction. Article No: 38. p. 1-4. 2010. https://doi.org/10.1145/1891903.1891952.
  • 28. Ho C, Spence C. Assessing the effectiveness of various auditory cues in capturing a driver’s visual attention. J Exp Psychol Appl. 2005;11(3):157-74.
  • 29. Market research report”, IDTechEx Research. 2020. Available: www.idtechex.com/. Accessed 13 Aug 2020.
  • 30. Market research report, Markets and Markets Research Private Ltd. 2020. Available: www.marketsandmarkets.com/. Accessed 13 Aug 2020.
  • 31. Savastano D. “In-mold electronics makes gains in automotive, appliances and more.” printed electronics now, magazine. 2019. https://www.printedelectronicsnow.com. Accessed 13 Aug 2020.
  • 32. Technical report. “OEMS”, TATA, KIA; 2019. https://www.tatamotors.com/wp-content/uploads/2015/09/15093712/integrated-annual-report-2018-2019.pdf. Accessed 13 Aug 2020.
  • 33. Technical report. “CES Show,” Visteon. 2019. Available: https://www.visteon.com/. Accessed 13 Aug 2020.
  • 34. Technical report. “CES Show,” Continental. 2020. Available: https://www.continental.com/. Accessed 13 Aug 2020.
  • 35. Gellatly AW, Hansen C, Highstrom M, Weiss JP. “Journey: general motors’ move to incorporate contextual design into its next generation of automotive HMI designs.” In Proceedings of the International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ’10). pp. 156-161. ACM Press. 2010.
  • 36. Krithikaa M. “Touch screen technology.” Int J Trend Res Dev. 3(1). ISSN: 2394-9333, 2016.
  • 37. Huang Q, Zhu Y. “Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes”, and applications. Adv Mater Technol. 2019;4:1800546. https://doi.org/10.1002/admt.201800546.
  • 38. Technical data sheet. “UV curable CNT transparent conductive ink”. CHASM-AGENT-VC210; 2021. www.chasmtek.com. Accessed 25 Jan 2021.
  • 39. Technical data sheet. “Carbon nanotubes conductive ink/paste”. ADCNT30; 2021. https://www.adnanotech.com/carbon-conductive-ink-and-paste.html. Accessed 25 Jan 2021.
  • 40. Srinivasan KP, Muthuramalingam T. Design, Fabrication and crack analysis of silver track printed flexible sensor for automobile infotainment application. IEEE Sens J. 2021;21:13910-5. https://doi.org/10.1109/JSEN.2021.3071582.
  • 41. Technical Data Sheet, Mahindra.
  • 42. Rama VK, Korada VA, Karthik PS, Singh SP. Conductive silver inks and its applications in printed and flexible electronics. RSC Adv. 2015. https://doi.org/10.1039/C5RA12013F.
  • 43. Zardetto V, Brown TM, Reale A, Di Carlo A. Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. Polym Phys. 2011. https://doi.org/10.1002/polb.22227.
  • 44. Gong Y, Cha KJ, Park JM. Deformation characteristics and resistance distribution in thermoforming of printed electrical circuits for in-mold electronics application. Int J Adv Manuf Technol. 2020;108:749-58. https://doi.org/10.1007/s00170-020-05377-9.
  • 45. Jeon M, Davison BK, Nees MA, Wilson J, Walker BN. “Enhanced auditory menu cues improve dual task performance and are preferred with in-vehicle technologies.” Proceedings of the First International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2009), Sep 21-22 2009, Essen, Germany. 2009.
  • 46. Lee SJ, So JY, Park C, Ban TG, Park LS. Transparent conductive multilayer films with optically clear adhesive interlayer for touch panel devices. J Appl Sci. 2010;10:1104-9. https://doi.org/10.3923/jas.2010.1104.1109.
  • 47. Khan S, Tinku S, Lorenzelli L, Dahiya RS. Flexible tactile sensors using screen-printed P (VDF-TrFE) and MWCNT/PDMS composites. IEEE Sens J. 2015;15(6):3146. https://doi.org/10.1109/JSEN.2014.2368989.
  • 48. Menona H, Aiswaryaab R, Surendran KP. Screen printable MWCNT inks for printed electronics. R Soc Chem. 2017;7:44076-81. https://doi.org/10.1039/C7RA06260.
  • 49. Li W, Yang S, Shamim A. Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flexible Electron. 2019. https://doi.org/10.1038/s41528-019-0057-1.
  • 50. Manjunath G, Pujar P, Gupta B, Gupta D, Mandal S. Low-temperature reducible particle-free screen-printable silver ink for the fabrication of high conductive electrodes. J Mater Sci Mater in Electron. 2019. https://doi.org/10.1007/s10854-019-02217-9.
  • 51. Zhong T, Jin N, Yuan W, Zhou C, Weibing G, Cui Z. Printable stretchable silver ink and application to printed RFID tags for wearable electronics. Materials. 2019;12:3036. https://doi.org/10.3390/ma12183036.
  • 52. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603-5. https://doi.org/10.1038/363603a0.
  • 53. Technical Data Sheet, “Dycotec materials Ltd.” DM-SIP3060S. 2020. Available: www.dycotecmaterials.com/. Accessed 13 Aug 2020.
  • 54. Technical Data Sheet, “Siltech corporation inc,” Silver50. 2020. http://www.siltechcorporation.com/. Accessed 13 Aug 2020.
  • 55. Technical Data Sheet, “DuPont de Nemours Inc. ” ME602. 2020. Available: www.dupont.com/. Accessed 13 Aug 2020.
  • 56. Christopher JM, Urbinaab EA, Nelsona J. Environmental and economic assessment of ITO-free electrodes for organic solar cells. Solar Energy Mater Solar Cells. 2000;97:14-21. https://doi.org/10.1016/j.solmat.2011.09.024.
  • 57. Khan S, Lorenzelli L, Dahiya RS. “Screen printed flexible pressure sensors skin,” 25th annual SEMI advanced semiconductor manufacturing conference. 978-1-4799-3944-2. (2014). https://doi.org/10.1109/ASMC.2014.6847002.
  • 58. Dong LW, de Jeong C, Javid A, Kimb S, Namb JD, Song C, Hana JG. Conductive polythiophene-like thin film synthesized using controlled plasma processes. Thin Solid Films. 2015;587(31):66-70. https://doi.org/10.1016/j.tsf.2014.12.030.
  • 59. Louwet F, Groenendaal L, Dhaen J, Manca J, VanLuppen J, Verdonck E, Leenders L. PEDOT/PSS: synthesis, characterization, properties and applications. Synth Met. 2003;135-136:115-7. https://doi.org/10.1016/S0379-6779(02)00518-0.
  • 60. Kim B-J, Han S-H, Park J-S. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels. Thin Solid Films. 2014;572(1):68-72. https://doi.org/10.1016/j.tsf.2014.08.015.
  • 61. Bhat C, Brown DP, Chen DP, Mikladal BF, Suilleabhain LO, Soininen EL, Tian D, Varjos I, Zhan X, “Curved mobile phone cover with carbon nanobud touch.” Touch Systems and Material; SID digest.
  • 62. Tobjork D, Osterbacka R. Paper electronics. Adv mater. 2011;23(17):201004692.
  • 63. MacDonald WA, Looney MK, MacKerron D, Eveson R, Adam R, Hashimoto K, Rakos K. Latest advances in substrates for flexible electronics. J Soc Inform Display. 2007. https://doi.org/10.1889/1.2825093.
  • 64. Khan S, Lorenzelli L, Dahiya R. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens J. 2015. https://doi.org/10.1109/JSEN.2014.2375203.
  • 65. MacDonald WA, Mackerron DH, Brooks DW, PET Packaging Technology, ed. D W Brookes (Sheffield Academic Press). 2002.
  • 66. MacDonald W.A. Polyester Film, Encyclopedia Polymer Science & Technology, 3rd edn. Wiley, New York.
  • 67. MacDonald WA, Mace JM, Polack NP. “New developments in polyester films for display applications,” 45th Annual Technical Conference Proceedings of the Society of Vacuum Coaters. 2002. p. 482.
  • 68. Pure-Ace™, Teijin Chemicals Ltd, 1-2-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo, Japan.
  • 69. Lexan™, GE Plastics, One Plastics Ave, Pittsfield, MA 01201, USA.
  • 70. Sumilite™, Sumitomo Bakelite Co.Ltd., Ten-Nouzu Parkside Blgd.,5-8,2-Chome, Higashi-Shinagawa, Shinagawa-Ku;Tokyo;140-0002, Japan.
  • 71. Arylite™, Ferrania S.p.A.,Centro Direzionale, Via Rivoltana, 2/d, Edificio A, I 20090 Segrate (MI), Italy.
  • 72. Kapton™, DuPont High Performance Films, P.O. Box 89, Route 23, South and DuPont Road, Circleville, OH 43113, U.S.A.
  • 73. Tran T, Chua C-K. A review: additive manufacturing for active electronic components. Virtual Phys Prototyp. 2016;12(1):1-16. https://doi.org/10.1080/17452759.2016.1253181.
  • 74. Maddipatla D, Narakathu BB, Atashbar M. Recent progress in manufacturing techniques of printed and flexible sensors: a review. Biosensors. 2020. https://doi.org/10.3390/bios10120199.
  • 75. Williams B. “Web tension control”. Montalvo Corporation; 2021. www.montalvo.com/. Accessed 25 Jan 2021.
  • 76. Szentgyorgyvolgyi R, Novotny E, Weimert M. “Determining and selecting screen printing form parameters For printing on paper and textile.” 9th International Symposium on Graphic Engineering and Design. 2018. https://doi.org/10.24867/GRID-2018-p42.
  • 77. Pan J, Tonkay GL, Quintero A. Screen printing process design of experiments for fine line printing of thick film ceramic substrates. J Electron Manuf. 1999;09(03):203-13. https://doi.org/10.1142/S096031319900012X.
  • 78. Ahn SH, Guo LJ. Large-area roll-to-roll and roll-to-plate nano-imprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano. 2009. https://doi.org/10.1021/nn9003633.
  • 79. Sun J, Sapkota A, Park H, Wesley P, Jung Y, Maskey BB, Kim Y, Majima Y, Ding J, Ouyang J, Guo C, Lefebvre J, Li Z, Malenfant PRL, Javey A, Cho G. Fully R2R-printed carbon-nanotube-based limitless length of flexible active-matrix for electrophoretic display application. Adv Electron Mater. 2020. https://doi.org/10.1002/aelm.20190143.
  • 80. Birnstock J, Blassing J, Hunze A, Scheffel M, Stosel M, Heuser K, Wittmann G, Worle J, Winnacker A. Screen-printed passive matrix displays based on light-emitting polymers. Appl Phys Lett. 2001. https://doi.org/10.1063/1.1379594.
  • 81. Mukhopadhyay SC. Wearable sensors for human activity monitoring: a review. IEEE Sens. 2015. https://doi.org/10.1109/JSEN.2014.2370945.
  • 82. Ahmad J, Li X, Siden J, Andersson H. “An analysis of screen-printed stretchable conductive tracks on thermoplastic polyurethane.” IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). 2019. https://doi.org/10.1109/FLEPS.2019.8792266.
  • 83. Suikkola J, Jorninen T, Mosallaei M, Kankkunen T, Ketola PI, Ukkonen L, Vanhala J, Mantysalo M. Screen-printing fabrication and characterization of stretchable electronics. Sci Rep. 2016;6:25784.
  • 84. White paper. “Quick guide to industrial display in-house design and manufacturing capability”. IDP-3100 Series. Advantech Co., Ltd.; 2021. www.advantech.com/. Accessed 25 Jan 2021.
  • 85. Technical report, “Automotive True Touch Multi-Touch All-Points Touchscreen Controller,” Infineon and Cypress. Document Number: -16617. 2019. [Online]. Available: www.infineon.com/andwww.cypress.com/. Accessed 13 Aug 2020.
  • 86. Madaan P, Kaur P, “Capacitive sensing made easy.” Cypress. 2012. Available: www.cypress.com/. Accessed 13 Aug 2020.
  • 87. Technical report, “Hardware design and layout guidelines.” Renesas., R01AN3825EU0101. 2017. Available: www.renesas.com/. Accessed 13 Aug 2020.
  • 88. Technical report. “Capacitive sensing technology”. AN4312. STMicroelectronics; 2021. www.st.com. Accessed 25 Jan 2021.
  • 89. Technical report, “Touch Sensing Layout Guidelines,” Semtech Corporation., SX8644. 2010. Available: http://www.semtech.com/. Accessed 13 Aug 2020.
  • 90. Camacho O, Viramontes E. “Designing Touch sensing electrodes,” Freescale Semiconductor, Inc., AN3863. 2010. Avalable: www.nxp.com/. Accessed 13 Aug 2020.
  • 91. Hanumanthaiah S, Lanka S. “Mechanical buttons to capacitive sensing,” edn. 2013. Available: www.edn.com/.Accessed 13 Aug 2020.
  • 92. Fan W, Lok BK, Lai FK, Wei J. “Evaluation of printed capacitive touch sensors for touch panel.” IEEE, 19th Electronics Packaging Technology Conference. 978-1-5386-3042-6/17. 2017. https://doi.org/10.1109/EPTC.2017.8277586.
  • 93. Hong C-H, Shin J-H, Ju B-K, Kim K-H, Park N-M, Kim B-S, Cheong W-S. Index-matched indium tin oxide electrodes for capacitive touch screen panel applications. J Nanosci Nanotechnol. 2013;13:7756-9. https://doi.org/10.1166/jnn.2013.7814.
  • 94. Ko S, Shin H, Lee J, Jang H, Lee K, “Low noise capacitive sensor for multi-touch mobile handset’s applications.” IEEE Asian Solid-State Circuits Conference. 2010. https://doi.org/10.1109/ASSCC.2010.5716570.
  • 95. Thermoforming design guide,” CW Thomas. 2020. Available: www.cwthomas.com. Accessed 13 Aug 2020.
  • 96. Van Mieghem B, Desplentere F, Van Bael A, Ivens J. Improvements in thermoforming simulation by use of 3D digital image correlation. Expr Polym Lett. 2015;9(2):119-28. https://doi.org/10.3144/expresspolymlett.2015.13.
  • 97. Ye R. “Creating complex parts with overmolding and insert molding”. 3E Rapid Prototyping Ltd.; 2021. https://www.3erp.com/. Accessed 25 Jan 2021.
  • 98. Ing. Jorg Franke, “Three-dimensional molded interconnect devices (3D-MID),” Hanser Publishers, Munich. 2014.
  • 99. Savastano D. “In-mold electronics makes gains in automotive, appliances and more.” Printed Electronics Now, magazine. 2019. Available: https://www.printedelectronicsnow.com/. Accessed 13 Aug 2020.
  • 100. Liu RH, Young W-B, Ming HP. Design of the printing pattern on film for three-dimensional molded interconnect devices. Adv Polym Technol. 2016;37:1722-31. https://doi.org/10.1002/adv.21830.
  • 101. Wimmer A, Reichel H, Rauch B, Schramm R, Horber J, Hasler B. “Manufacturing of sandwich structures for the integration of electronics. In Mold Labelling Components,” 12th International Congress Molded Interconnect Devices. 2016. https://doi.org/10.1109/ICMID.2016.7738922.
  • 102. Srinivasan KP, Muthuramalingam T. Fabrication and performance evolution of AgNP interdigitated electrode touch sensor for automotive infotainment. Sensors. 2021;21:7961.
  • 103. Lee SY, Jang SH, Lee HK, Kim JS, Lee SK, Song HJ, Jung JW, Yoo ES, Choi J. The development and investigation of highly stretchable conductive inks for 3-dimensional printed in-mold electronics. Org Electron. 2020;85:105881. https://doi.org/10.1016/j.orgel.2020.105881.
  • 104. Chen H-L, Chen S-C, Liao W-H, Chien R-D, Lin Y-T. Effects of insert film on asymmetric mold temperature and associated part warpage during in-mold decoration injection molding of PP parts. Int Commun Heat Mass Transf. 2013;41:34-40. https://doi.org/10.1016/j.icheatmasstransfer.
  • 105. Modławski M, Jaruga T. “Computer simulation of thermoforming process and its verification using a rapid tooling mould.” MATEC Web of Conferences. 2018. p. 157. https://doi.org/10.1051/matecconf/201815702032.
  • 106. Mieghem BV, Desplentere F, Bael AV, Ivens J. Improvements in thermoforming simulation by use of 3D digital image correlation. Exp Polym Lett. 2015;9:119-28.
  • 107. Srinivasan KP, Muthuramalingam T. In-depth scrutinization of in- mold electronics for automotive applications. J Phys Conf Ser. 2021;1969:012064.
  • 108. Muthuramalingam T, Mohan B. Performance analysis of iso current pulse generator on machining characteristics in EDM process. Arch Civ Mech Eng. 2014;14:383-90. https://doi.org/10.1016/j.acme.2013.10.003.
  • 109. Phan NH, Muthuramalingam T, Vu NN, Tuan NQ. Influence of micro size titanium powders mixed dielectric medium on surface quality measures in EDM process. Int J Adv Manuf Technol 2020;109:797-807. https://doi.org/10.1007/s00170-020-05698-9.
  • 110. Geethapriyan T, Kalaichelvan K, Muthuramalingam T. Influence of coated tool electrode on drilling inconel alloy 718 in electrochemical micro machining. Procedia CIRP. 2018;46:127-30. https://doi.org/10.1016/j.procir.2016.03.133.
  • 111. Muthuramalingam T, Rabik MM. Sensor integration based approach for automatic fork lift trucks. IEEE Sensors. 2018;18(2):736-40. https://doi.org/10.1109/JSEN.2017.2777880.
  • 112. Rabik MM, Muthuramalingam T. Tracking and locking system for shooter with sensory noise cancellation. IEEE Sensors. 2018;18(2):732-5. https://doi.org/10.1109/JSEN.2017.2772316.
  • 113. Srinivasan KP, Muthuramalingam T. Design, Fabrication and crack analysis of silver track printed flexible sensor for automobile infotainment application. IEEE Sensors. 2021;21(12):13910-5.
  • 114. Palanisamy S, Thangaraj M, Moiduddin K, Al-Ahmari AM. Fabrication and performance analysis of 3D inkjet flexible printed touch sensor based on AgNP electrode for infotainment display. Coatings. 2022;12:416. https://doi.org/10.3390/coatings12030416.
  • 115. Murali PK, Kaboli M, Dahiya R. Intelligent in-vehicle interaction technologies. Adv Intell Syst. 2022;4:2100122. https://doi.org/10.1002/aisy.202100122.
  • 116. Braun A, Wichert R, Kuijper A, Fellner D. Capacitive proximity sensing in smart environments. J Ambient Intell Smart Environ. 2015;7:483-510. https://doi.org/10.3233/AIS-150324.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6891bc13-f554-47ff-ab01-098309b9478c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.