Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The operation of high-speed tracked vehicles takes place in difficult terrain conditions. Hence, to obtain a high operational relia-bility, the design or modernisation process must be precise and should consider even the slightest details. The article presents issues re-lated to the problem of formulating vehicle models using partial models of flexible elements used in tracked mechanisms. Changes occur-ring in the shape and properties of elements such as track pads and roadwheel bandages as a consequence of operating conditions are presented. These changes are reflected in the presented elastic–damping characteristics of components of the crawler mechanism. Nu-merical studies have shown that deterioration of chassis suspension components after a significant mileage may increase dynamic loads (forces) acting on the running gear. Increased forces in the running gear naturally result in increased stresses in the road surface on which the vehicle is travelling, which can pose a danger (or excessive wear and tear) to road infrastructure components such as culverts, bridges and viaducts. In the literature, model tests of objects are carried out on models that represent new vehicles, and the characteristics of the adopted elements correspond to elements not affected by the process and operating conditions. Its influence should not be ignored in the design, testing and running of a special vehicle. The tracked mechanism, as running gear, is designed for special high-speed vehicles for off-road and off-road driving. Its design ensures high off-road traversability. The dynamic loads originating from off-road driving are super-imposed on those generated by the engine, drive train and interaction of the tracks with the roadwheels, sprocket, idler and supporting tracks return rollers.
Czasopismo
Rocznik
Tom
Strony
85--94
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
autor
- Faculty of Mechanical Engineering, Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Bibliografia
- 1. Djurić R, Milis Avljević V. Investigation of the relationship between reliability of track mechanism and mineral dust content in rocks of lignite open pits. Maintenance and Reliability. 2016; 18 (1): 142-150.
- 2. Grygier D. The impact of operation of elastomeric track chains on the selected properties of the steel cord wires. Maintenance and Reliabil-ity. 2017; 19 (1): 95-101.
- 3. Dudziński P, Kosiara A, Konieczny A. Wirtualne prototypowanie nowej generacji układu jezdnego na gąsienicach elastomerowych do zastosowań arktycznych. Postępy Nauki i Techniki. 2012; 14: 64-74.
- 4. Czabanowski R. Numeryczna analiza obciążeń wybranych elemen-tów podwozia z gąsienicami elastomerowymi. Przegląd Mechanicz-ny. 2010; nr 7-8: 30-36.
- 5. Dziubak T. The effects of dust extraction on multi-cyclone and non-woven fabric panel filter performance in the air filters used in special vehicles. Maintenance and Reliability. 2016; 18 (3): 348-357.
- 6. Gniłka J, Mężyk A. Experimental identification and selection of dy-namic properties of a high-speed tracked vehicle suspension system. Maintenance and Reliability. 2017; vol. 19 (1): 108-113.
- 7. Bogucki R. Badania prototypów nakładek elastomerowych na człony taśm gąsienicowych. Szybkobieżne Pojazdy Gąsienicowe. 2013; 1 (32): 37-46.
- 8. Rybak P. Tracked or Wheeled Chassis. Journal of Kones Powertrain and Transport. 2007; 14 (3):527-536.
- 9. Rybak P. Operating loads of impulse nature acting on the special equipment of the combat vehicles. Maintenance and Reliability. 2014; 16 (3): 347-353.
- 10. Campanelli M, Shabana AA, Choi JH. Chain vibration and dynamic stress in three-dimensional multibody tracked vehicles. Multibody System Dynamics. 1998; 2: 277–316.
- 11. Lee K. A numerical method for dynamic analysis of tracked vehicles of high mobility. KSME International Journal. 2000; 14 (10): 1028-1040.
- 12. Ma ZD, Perkins NC. A super-element of track-wheel-terrain interac-tion for dynamic simulation of tracked vehicles. Multibody System Dynamics. 2006; 15: 351–372.
- 13. Wallin M, Aboubakr AK, Jayakumar P,·Letherwood MD,·Gorsich DJ,·Hamed A,·Shaban A. A comparative study of joint formulations: application to multibody system tracked vehicles. Nonlinear Dynam-ics. 2013; 74 (3): 783–800.
- 14. Wang P, Rui X, Yu H. Study on dynamic track tension control for high-speed tracked vehicles. Mechanical Systems and Signal Pro-cessing. 2019; 132: 277-292. Available from: doi.org/10.1016/j.ymssp.2019.06.031
- 15. Wang Z, Lv H, Zhou X, Chen Z, Yang Y. Design and Modeling of a Test Bench for Dual-Motor Electric Drive Tracked Vehicles Based on a Dynamic Load Emulation Method. Sensor. 2018; 18: 1-20.
- 16. Dudziński P, Chołodowski J. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 1. A review of the state-of-the-art methods for modeling the internal resistance of tracked vehicles. Journal of Terramechanics. 2021; 96: 81-100. Available from: doi.org/10.1016/j.jterra.2021.02.006
- 17. Chołodowski J, Dudziński P, Ketting M. A method for predicting the internal motion resistance of rubber-tracked undercarriages, Pt. 3. A research on bending resistance of rubber tracks. Journal of Terrame-chanics. 2021; 97: 71-103. Available from: https://doi.org/10.1016/j.jterra.2021.02.005
- 18. Liu W, Cheng K, Wang J. Failure analysis of the rubber track of a tracked transporter. Advances in Mechanical Engineering. 2018; 10 (7): 1–8.
- 19. Gat G, Franco Y, Shmulevich I. Fast dynamic modeling for off-road track vehicles. Journal of Terramechanics. 2020; 92: 1-12. Available from: doi: 10.1016/j.jterra.2020.09.001.
- 20. Burdziński Z. Teoria ruchu pojazdu gąsienicowego. Warszawa: WKŁ; 1972.
- 21. Mahalingam I, Padmanabhan C. A novel alternate multibody model for the longitudinal and ride dynamics of a tracked vehicle. Vehicle System Dynamics. 2021; 59(3): 433-457.
- 22. Edwin P, Shankar K, Kannan K. Soft soil track interaction modeling in single rigid body tracked vehicle models. J Terramechanics. 2018; 77:1-14.
- 23. Sandu C, Freeman JS. Military tracked vehicle model. Part I: Multi-body dynamics formulation.Int J Veh Syst Model Test. 2005; 1(1-3):48–67.
- 24. Janarthanan B, Padmanabhan C, Sujatha C. Longitudinal dynamics of a tracked vehicle:simulation and experiment. J Terramechanics. 2012;49(2):63-72.
- 25. Nabagło T, Jurkiewicz A, Kowal J. Modeling verification of an ad-vanced torsional spring for tracked vehicle suspension in 2S1 vehicle model. Engineering Structures. 2021; 229: 111623.
- 26. Ata WG, Oyadiji SO. An investigation into the effect of suspension configurations on the performance of tracked vehicles traversing bump terrains. Vehicle System Dynamics. 2014; 52(7): 1-25.
- 27. Sandu C, Freeman JS. Military tracked vehicle model. Part II: Case study. Int J Veh Syst Model Test. 2005;1(1-3):216-231.
- 28. Budynas R, Nisbett K. Shigley’s Mechanical Engineering Design. McGraw Hill Education; 2019.
- 29. Borkowski W, Rybak P, Hryciów Z. Modele częściowe w analizie obciążeń struktur nośnych wozów bojowych. Biuletyn Wojskowej Akademii Technicznej. 2006; 55(4):221-232.
- 30. Hryciów Z; Małachowski J; Rybak P, Wiśniewski A. Research of Vibrations of an armoured Personnel Carrier Hull with FE Implemen-tation. Materials. 2021; 14,6807:1-18. Available from: doi.org/10.3390/ma14226807.
- 31. Hebda M, Łopata A. Grafen – materiał przyszłości. Czasopismo Techniczne. Mechanika. 2012; R. 109, Z. 22, 8-M: 45-53.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-689136d4-d4a7-44f8-8e0b-0a503ff41cc6