Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this paper is to study the asymptotic behavior of aggregated Weyl multifractional Ornstein–Uhlenbeck processes mixed with Gamma random variables. This allows us to introduce a new class of processes, Gamma-mixed Weyl multifractional Ornstein–Uhlenbeck processes (GWmOU), and study their elementary properties such as Hausdorff dimension, local self-similarity and short-range dependence. We also prove that these processes approach the multifractional Brownian motion.
Czasopismo
Rocznik
Tom
Strony
269--295
Opis fizyczny
Bibliogr.19 poz.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
autor
- Department of Mathematics, National School of Applied Sciences, Marrakesh, Cadi Ayyad University, BP Guéliz Boulevard Abdelkrim Al Khattabi, Marrakesh, Morocco
autor
- Department of Mathematics, Faculty of Technology, Linnaeus University, P G Vejdes väg, 351 95 Växjö, Sweden
Bibliografia
- [1] G. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, 1999.
- [2] A. Ayache, S. Jaffard and M. S. Taqqu, Wavelet construction of generalized multifractional processes, Rev. Mat. Iberoamer. 23 (2007), 327-370.
- [3] A. Ayache and M. S. Taqqu, Multifractional processes with random exponent, Publ. Mat. 49 (2005), 459-486.
- [4] A. Benassi, S. Jaffard and D. Roux, Elliptic Gaussian random processes, Rev. Mat. Iberoamer. 13 (1997), 19-90.
- [5] S. Bianchi, Pathwise identification of the memory function of multifractional Brownian motion with application to finance, Int. J. Theoret. Appl. Finance 8 (2005), 255-281.
- [6] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
- [7] P. Billingsley, Convergence of Probability Measures, 2nd ed., Wiley, New York, 1999.
- [8] P. Cheridito, H. Kawaguchi and M. Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8 (2003), no. 3, 14 pp.
- [9] S. Eryilmaz, δ-shock model based on Polya process and its optimal replacement policy, Eur. J. Oper. Res. 263 (2017), 690-697.
- [10] K. Es-Sebaiy and C. A. Tudor, Fractional Ornstein-Uhlenbeck processes mixed with a Gamma distribution, Fractals 23 (2015), no. 3, art. 1550032, 10 pp.
- [11] K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 2nd ed., Wiley, 2003.
- [12] P. Flandrin, P. Borgnat and P. O. Amblard, From stationarity to self-similarity, and back: Variations on the Lamperti transformation, in: Processes with Long-Range Correlations, Lecture Notes in Phys. 621, Springer, New York, 2003, 88-117.
- [13] E. Iglói and G. Terdik, Long-range dependence through Gamma-mixed Ornstein-Uhlenbeck process, Electron. J. Probab. 4 (1999), no. 16, 33 pp.
- [14] S. C. Lim and C. H. Eab, Riemann-Liouville and Weyl fractional oscillator processes, Phys. Lett. A 355 (2006), 87-93.
- [15] S. C. Lim and L. P. Teo, Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes, J. Phys. A 40 (2007), 6035-6060.
- [16] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
- [17] R. F. Peltier and J. Lévy Véhel, Multifractional Brownian motion: definition and preliminary results, Research Report RR-2645, INRIA, 1995.
- [18] S. Samko, A. A. Kilbas and D. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993.
- [19] S. Stoev and M. S. Taqqu, How rich is the class of multifractional Brownian motions?, Stoch. Process. Appl. 116 (2006), 200-221.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68903ba6-7b78-43d8-a565-16d425b1c966