PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioactive Membranes from Cellulose with a Graphene Oxide Admixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of microbiological tests of composite membranes made of cellulose (CEL) with graphene oxide (GO) admixture. At the beginning, the antibacterial properties of the GO in aqueous solutions of various concentrations (0.001; 0.01; 0.1% w/w) were studied, and the obtained results allowed to use GO as an additive to cellulose membranes. The solution used to prepare the membranes was a 5% cellulose solution (CEL) in 1-ethyl-3-methylimidazolium acetate (EMIMAc), into which various amounts of graphene oxide (GO) dispersed in N,N-dimethylformamide (DMF) were added (0.5÷28.6% of GO). From this solution, composite membranes were formed using phase inversion method. It was observed that the GO addition influences the process of membrane formation and their physicochemical properties. The obtained membranes were subjected to microbiological tests using the Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcuc aureus) and fungi (Candida albicans). It was observed that the GO addition to the cellulose membrane (GO/CEL) inhibited the growth of bacteria and fungi, and the biological activity as dependent on the type of living organism and the size of GO particles.
Rocznik
Strony
231--240
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Institute of Environmental Protection and Engineering, University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
  • Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biała, ul. Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
  • 1. Akhavan O., Ghaderi E. 2010. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 4(10), 5731–5736.
  • 2. Fink H. P., Weigel P., Purz H. J. Ganster J. 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science (Oxford), 26(9), 1473–1524.
  • 3. Fryczkowska B., Sieradzka M., Sarna E., Fryczkowski R., Janicki J. 2015. Influence of a graphene oxide additive and the conditions of membrane formation on the morphology and separative properties of poly(vinylidene fluoride) membranes. Journal of Applied Polymer Science, 132(46), 42789.
  • 4. Fryczkowska B., Wiechniak K. 2017. Preparation and properties of cellulose membranes with graphene oxide addition. Polish Journal of Chemical Technology, 19(4), 41–49.
  • 5. Guerrero-Contreras J., Caballero-Briones F. 2015. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209–220.
  • 6. Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q, Fan C. 2010. Graphene-based antibacterial paper. ACS Nano, 4(7), 4317–4323.
  • 7. Huang Q., Xu M., Sun R., Wang X. 2016. Large scale preparation of graphene oxide/cellulose paper with improved mechanical performance and gas barrier properties by conventional papermaking method. Industrial Crops and Products, 85, 198–203.
  • 8. Hummers W. S., Offeman R. E. 1958. Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339–1339.
  • 9. Kafy A., Akther A., Shishir M. I. R., Kim H. C., Yun Y., Kim J. 2016. Cellulose nanocrystal/graphene oxide composite film as humidity sensor. Sensors and Actuators, A: Physical, 247, 221–226.
  • 10. Kanayama I., Miyaji H., Takita H., Nishida E., Tsuji M., Fugetsu B., Sun L., Inoue K, Ibara A., Akasaka T., SugayaT., Kawanami M. 2014. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide, 3363–3373.
  • 11. Kim C. J., Khan W., Kim D. H., Cho K. S., Park S. Y. 2011. Graphene oxide/cellulose composite using NMMO monohydrate. Carbohydrate Polymers, 86(2), 903–909.
  • 12. Kuo Y. N., Hong J. 2005. A new method for cellulose membrane fabrication and the determination of its characteristics. Journal of Colloid and Interface Science, 285(1), 232–238.
  • 13. Li G., Zhao H., Hong J., Quan K., Yuan Q., Wang X. 2017. Antifungal graphene oxide-borneol composite. Colloids and Surfaces B: Biointerfaces, 160, 220–227.
  • 14. Lim M. Y., Choi Y. S., Kim J., Kim K., Shin H., Kim J. J., Shin D.M., Lee J. C. 2017. Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine. Journal of Membrane Science, 521, 1–9.
  • 15. Lindman B., Karlström G., Stigsson L. 2010. On the mechanism of dissolution of cellulose. Journal of Molecular Liquids, 156(1), 76–81.
  • 16. Liu G., Ye H., Li A., Zhu C., Jiang H., Liu Y., Han K., Zhou Y. 2016. Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon, 110, 56–61.
  • 17. Liu S., Hu M., Zeng T. H., Wu R., Jiang R., Wei J., Wang L., Kong J., Chen Y. 2012. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir, 28(33), 12364–12372.
  • 18. Liu Y., Wen J., Gao Y., Li T., Wang H., Yan H., Niu B., Guo R. 2017. Antibacterial graphene oxide coatings on polymer substrate. Applied Surface Science, (2010).
  • 19. Luo H., Ao H., Li G., Li W., Xiong G., Zhu Y., Wan Y. 2017. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics, 17(2), 249–254.
  • 20. Mahmoudi N., Eslahi N., Mehdipour A., Mohammadi M., Akbari M., Samadikuchaksaraei A., Simchi A. 2017. Temporary skin grafts based on hybrid graphene oxide-natural biopolymer nanofibers as effective wound healing substitutes: pre-clinical and pathological studies in animal models. Journal of Materials Science: Materials in Medicine, 28(5), 1–12.
  • 21. Musico Y. L. F., Santos C. M., Dalida M. L. P., Rodrigues D. F. 2014. Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustainable Chem. Eng, 2, 1559–1565.
  • 22. Novoselov N. P., Sashina E. S., Kuz'mina O. G., Troshenkova S. V. 2007. Ionic liquids and their use for the dissolution of natural polymers. Russian Journal of General Chemistry, 77(8), 1395–1405.
  • 23. Pal N., Dubey P., Gopinath P., Pal K. 2017. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. International Journal of Biological Macromolecules, 95, 94–105.
  • 24. Palmieri V., Carmela Lauriola M., Ciasca G., Conti C., De Spirito M., Papi M. 2017. The graphene oxide contradictory effects against human pathogens. Nanotechnology, 28(15), 152001
  • 25. Parades J. I., Villar-Rodil S., Martínez-Alonso A., Tascón J. M. D. 2008. Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560– 10564.
  • 26. Pinkert A., Marsh K. N., Pang S., Staiger M. P. 2009. Ionic liquids and their interaction with cellulose. Chemical Reviews, 109(12), 6712–6728.
  • 27. Ramamoorthy S. K., Skrifvars M., Persson A. 2015. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polymer Reviews, 55(1), 107–162.
  • 28. Rambo C. R., Recouvreux D. O. S., Carminatti C. A., Pitlovanciv A. K., Antônio R. V., Porto L. M. 2008. Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Materials Science and Engineering C, 28(4), 549–554.
  • 29. Rui-Hong X., Peng-Gang R., Jian H., Fang R., Lian-Zhen R., Zhen-Feng S. 2016. Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydrate Polymers, 138, 222–228.
  • 30. Shahnawaz Khan M., Abdelhamid H. N., Wu H. F. 2015. Near infrared (NIR) laser mediated surface activation of graphene oxide nanoflakes for efficient antibacterial, antifungal and wound healing treatment. Colloids and Surfaces B: Biointerfaces, 127, 281–291.
  • 31. Singh Z. 2016. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnology, Science and Applications, 9, 15–28.
  • 32. Singh Z., Singh R. 2017. Toxicity of Graphene Based Nanomaterials Towards Different Bacterial Strains: A Comprehensive Review. American Journal of Life Sciences American Journal of Life Sciences. Special Issue: Environmental Toxicology, 5(5), 3–1.
  • 33. Sun X. F., Qin J., Xia P. F., Guo B. B., Yang C. M., Song C., Wang S. G. 2015. Graphene oxide-silver nanoparticle membrane for biofouling control and water purification. Chemical Engineering Journal, 281, 53–59.
  • 34. Tang L., Li X., Du D., He C. 2012. Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Progress in Natural Science: Materials International, 22(4), 341–346.
  • 35. Texter J. 2014. Graphene dispersions. Current Opinion in Colloid and Interface Science. 19(2), 163–174.
  • 36. Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., Liu Z., Huang Q., Fan C., Fang H., Zhou R. 2013. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 8(8), 594–601.
  • 37. Wan C., Li J. 2016. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydrate Polymers, 150, 172–179.
  • 38. Yang E., Alayande A. B., Kim C.-M., Song J., Kim I. S. 2018. Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement. Desalination, 426(October 2017).
  • 39. Yang X. N., Xue D. D., Li J. Y., Liu M., Jia S. R., Chu L. Q., Wahid F., Zhang Y. M., Zhong C. 2016. Improvement of antimicrobial activity of graphene oxide/bacterial cellulose nanocomposites through the electrostatic modification. Carbohydrate Polymers, 136, 1152–1160.
  • 40. Yoon K. Y., An S. J., Chen Y., Lee J. H., Bryant S. L., Ruoff R. S., Huh C., Johnston K. P. 2013. Graphene oxide nanoplatelet dispersions in concentrated NaCl and stabilization of oil/water emulsions. Journal of Colloid and Interface Science, 403, 1–6.
  • 41. Zhang X., Yu H., Yang H., Wan Y., Hu H., Zhai Z., Qin J. 2015. Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. Journal of Colloid and Interface Science, 437, 277–282.
  • 42. Zhu S., Wu Y., Chen Q., Yu Z., Wang C., Jin S., Ding Y., Wu G. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chemistry, 8(4), 325–327.
  • 43. Zhu W., Li W., He Y., Duan T. 2015. In-situ bio-preparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Applied Surface Science, 338, 22–26.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-688ce10a-a8cd-4849-b4ff-7e88f98fbba7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.