PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heating and cooling degree-days vs climate change in years 1979-2021. Evidence from the European Union and Norway

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Stopniodni grzania i chłodzenia a zmiany klimatu w latach 1979-2021. Przykład Unii Europejskiej i Norwegii
Języki publikacji
EN
Abstrakty
EN
Energy consumption depends strongly on weather conditions. Thus, to formulate energy-related policy goals, it is crucial to monitor changes related to the heating degree days (HDD) and cooling degree days (CDD) – widely applied indicators of climate change. The study investigated the impact that climate change (global warming) exerted on the number of HDD and CDD, as well as the weather-related final energy consumption of the European households (EU-27 and Norway), based on data derived from Eurostat for the period 1979-2021. The results indicate that the changes in HDD and CDD constituted non-linear functions of the country’s average temperature, with the largest percentage changes observed in the warmest (in the case of HDD) and the coldest (in the case of CDD) portion of European countries. As indicated by estimations based on first-difference linear regression models, climate change has contributed so far to the net decrease in weather-related energy consumption of households.
PL
Zużycie energii jest silnie uzależnione od warunków pogodowych. Z tego względu, w celu kształtowania polityki energetycznej kluczowego znaczenia nabiera obserwacja zmian w zakresie stopniodni ogrzewania (HDD) i stopniodni chłodzenia (CDD), powszechnie wykorzystywanych wskaźników zmian klimatycznych. Przedmiotem badania był wpływ zmian klimatycznych (globalnego ocieplenia) na liczbę HDD i CDD, jak również oszacowanie wpływu tych zmian na uwarunkowane pogodowo zużycie energii przez europejskie gospodarstwa domowe (w UE-27 i Norwegii), na podstawie danych Eurostat z lat 1979-2021. Badanie wykazało, iż zmiany HDD i CDD stanowią nieliniowe funkcje przeciętnej temperatury powietrza, a największe zmiany w ujęciu procentowym zaobserwowano w najcieplejszych (w przypadku HDD) i najzimniejszych (w przypadku CDD) regionach UE. Jak wykazały estymacje oparte na indywidualnych regresjach liniowych na pierwszych różnicach zmiennych, zmiany klimatyczne przyczyniły się dotychczas do zmniejszenia uwarunkowanego pogodowo zużycia energii przez europejskie gospodarstwa domowe.
Rocznik
Tom
Strony
art. no. 619
Opis fizyczny
Bibliogr. 43 poz. tab., rys.
Twórcy
  • Faculty of Economics, University of Gdańsk, Poland, Armii Krajowej Street 119/121, 81-824 Sopot, Poland
  • Faculty of Economics, University of Gdańsk, Poland, Armii Krajowej Street 119/121, 81-824 Sopot, Poland
  • Department of History, Politics and International Studies, Neapolis University Pafos, Cyprus
  • Faculty of Economics, Finance and Management, University of Szczecin
Bibliografia
  • Aebischer, B., Catenazzi, G., Henderson, G., & Jakob, M. (2007). Impact of climate change on thermal comfort, heating and cooling energy demand in Europe. ECEEE Summer Study, 859-870.
  • Amato, A., Ruth, M., Kirshen, P., & Horwitz, J. (2005). Regional energy demand responses to climate change: methodology and application to the commonwealth of Massachusetts. Climate Change, 71(1), 175-201. https://doi.org/10.1007/s10584-005-5931-2
  • Andrade, C., Mourato, S., & Ramos, J. (2021). Heating and Cooling Degree-Days Climate Change Projections for Portugal. Atmosphere, 12(6), 715. https://doi.org/10.3390/atmos12060715
  • André Pina, A., Ferrão, P., Fournier, J., Lacarrière, B., & Le Corre, O. (2017). The impact of climate change on building heat demand in different climate types. Energy and Buildings, 149, 225-234. https://doi.org/10.1016/j.enbuild.2017.05.047
  • Andreu, V., Aparicio-Fernández, C., Martínez-Ibernón, A., & Vivancos, J. L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165(A), 63-74. https://doi.org/10.1016/j.energy.2018.09.015
  • Atılgan, A., Yücel, A., & Saltuk, B. (2018). Determination of heating and cooling degree-day values and heating and cooling-days in broiler husbandry: Central anatolian case. Proceedings of 17th International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 17, 199-204. https://doi.org/10.22616/ERDev2018.17.N229
  • Barnett, J., & O’Neill, S. (2010). Maladaptation. Global Environmental Change, 20, 211-213. https://doi.org/10.1016/j.gloenvcha.2009.11.004
  • Bhatnagar, M., Jyotirmay, M., & Garg, V. (2018). Determining base temperature for heating and cooling degree-days for India. Journal of Building Engineering, 18, 270-280. https://doi.org/10.1016/j.jobe.2018.03.020
  • Bush, E., & Lemmen, D. S. (2019). Canada’s Changing Climate Report. https://changingclimate.ca/CCCR2019/
  • Cao, J., Li, M., Zhang, R., & Wang, M. (2021). An efficient climate indexfor reflecting cooling energy consumption: Coolingdegree days based on wet bulb temperature. Meteorological Applications, 28(3), e2005. https://doi.org/10.1002/met.2005
  • Cartalis, C., Synodinou, A., Proedrou, M., Tsangrassoulis, A., & Santamouris, M. (2001). Modifications in energy demand in urban areas as a result of climate changes: an assessment for the southeast Mediterranean region. Energy Conversion and Management, 42(14), 1647-1656. https://doi.org/10.1016/S0196-8904(00)00156-4
  • Chidiac, S. E., Yao, L., & Liu, P. (2022). Climate Change Effects on Heating and Cooling Demands of Buildings in Canada. CivilEng, 3(2), 277-295. https://doi.org/10.3390/civileng3020017
  • Chun-sheng, Z., Shu-wen, N., & Xin, Z. (2012). Effects of household energy consumption on environment and its influence factors in rural and urban areas. Energy Procedia, 14, 805-811. https://doi.org/10.1016/j.egypro.2011.12.1015
  • Colelli, F. P., & de Cian, E. (2020). Cooling demand in integrated assessment models: a methodological review. Environmental Research Letters, 15(11), 113005. https://doi.org/10.1088/1748-9326/abb90a
  • del Pablo-Romero, M., Sánchez-Braza, A., & González-Jara, D. (2023). Economic growth and global warming effects on electricity consumption in Spain: a sectoral study. Environmental Science and Pollution Research, 30, 43096-43112. https://doi.org/10.1007/s11356-022-22312-5
  • Dirks, J., Gorrissen, W., Hathaway, J., Skorski, D., Scott, M., Pulsipher, T., Huang, M., Liu, Y., & Rice, J. (2015). Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach. Energy, 79, 20-32. https://doi.org/10.1016/j.energy.2014.08.081
  • Earth Observatory. (2020). If Earth Has Warmed and Cooled Throughout History, What Makes Scientists Think That Humans Are Causing Global Warming Now? https://earthobservatory.nasa.gov/blogs/climateqa/if-earth-has-warmed-and-cooled-throughout-history-what-makes-scientists-think-that-humans-are-causing-global-warming-now/
  • Eurostat. (2023). Energy statistics. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview
  • Fraisse, C., & Paula-Moraes, S. (2018). Degree-Days: Growing, Heating, and Cooling: ABE381/AE428, rev. 4/2018. EDIS, 2018(2). https://doi.org/10.32473/edis-ae428-2018
  • Hadley, S. W., Erickson III, D. J., Hernandez, J. L., Broniak, C. T., & Blasing, T. J. (2006). Responses of energy use to climate change: a climate modeling study. Geophysical Research Letters, 33(17). https://doi.org/10.1029/2006GL026652
  • Hekkenberg, M., Moll, H. C., & Schoot Uiterkamp, A. J. M. (2009). Dynamic temperature dependence patterns in future energy demand models in the context of climate change. Energy, 34(11), 1797-1806. https://doi.org/10.1016/j.energy.2009.07.037
  • IEA. (2018). The Future of cooling. https://www.iea.org/reports/the-future-of-cooling
  • Indraganti, M., & Boussaa, D. (2016). A method to estimate the hearing and cooling degree climate zones of Saudi Arabia. Building Services Engineering Research and Technology, 38(3), 327-350. https://doi.org/10.1177/0143624416681383
  • IPCC. (2018). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai & H.O. Pörtner (Eds.), Global Warming of 1.5 °C (pp. 32). Geneva: World Meteorological Organization.
  • Isaac, M., & van Vuuren, D. P. (2009). Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37(2), 507-521. https://econpapers.repec.org/RePEc:eee:enepol:v:37:y:2009:i:2:p:507-521
  • Karl, T. R., & Trenberth, K. E. (2003). Modern Global Climate Change. Science, 302, 1719-1723. https://doi.org/10.1126/science.1090228
  • Lam, Ch., He, Q., Cheng, K., Fan, P. Y., Chun, K. Y., Choi, B., Mah, D. N., Cheung, D. M., Lo, K., & Yetemen, O. (2022). Impact of climate change and socioeconomic factors on domestic energy consumption: The case of Hong Kong and Singapore. Energy Reports, 8, 12886-12904. https://doi.org/10.1016/j.egyr.2022.09.059
  • Li, Y., Pizer, W. A., & Wu, L. (2018). Climate change and residential electricity consumption in the Yangtze River Delta, China. PNAS, 116(2), 472-477. https://doi.org/10.1073/pnas.1804667115
  • Mastrucci, A., van Ruijven, B., Byers, E., Poblete-Cazenave, M., & Pachauri, S. (2021). Global scenarios of residential heating and cooling energy demand and CO2 emissions. Climatic Change, 168, 14. https://doi.org/10.1007/s10584-021-03229-3
  • Mehregan, M., Sajjad Vakili, A. N., & Delpisheh, N. (2022). Building energy model validation and estimation using heating and cooling degree days (HDD–CDD) based on accurate base emperature. Energy Science & Engineering, 10(9), 3638-3649. https://doi.org/10.1002/ese3.1246
  • Pérez-Andreu, P., Aparicio-Fernández, C., Martínez-Ibernón, A., & Vivancos, J. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165(A), 63-74. https://doi.org/10.1016/j.energy.2018.09.015
  • Petri, Y., & Caldeira, K. (2015). Impacts of global warming on residential heating and cooling degree-days in the United States. Scientific Reports, 5, 12427. https://www.nature.com/articles/srep12427
  • Roshan, G., Arab, M., & Klimenko, V. (2019). Modeling the impact of climate change on energy consumption and carbon dioxide emissions of buildings in Iran. Journal of Environmental Health Science and Engineering, 17(2), 889-906. https://doi.org/10.1007/s40201-019-00406-6
  • Sailor, D. J., & Pavlova, A. A. (2003). Air conditioning market saturation and long-term response of residential cooling energy demand to climate change. Energy, 28(9), 941-951. https://doi.org/10.1016/S0360-5442(03)00033-1
  • Shi, Y., Wang, G., Gao, X., & Xu, Y. (2018). Effects of climate and potential policy changes on heating degree days in current heating areas of China. Scientific Reports, 8, 10211. https://doi.org/10.1038/s41598-018-28411-z
  • Silva, S., Soares, I., & Pinho, C. (2020). Climate change impacts on electricity demand: The case of a Southern European country. Utilities Policy, 67, 101115. https://doi.org/10.1016/j.jup.2020.101115
  • Spinoni, J., Vogt, J.V., Naumann, G., Barbosa, P., & Dosio, A., (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38, 1718-1736. https://doi.org/10.1002/joc.5291
  • Taseska, V., Marknska, N., & Callaway, J. (2012). Evaluation of climate change impacts on energy demand. Energy, 48(1), 88-95. http://dx.doi.org/10.1016/j.energy.2012.06.053
  • Thom, H. C. S. (1952). Seasonal degree day statistics for the United States. Monthly Weather Review, 80(9), 143-149. https://doi.org/10.1175/1520-0493(1952)080%3C0143:SDSFTU%3E2.0.CO;2
  • Thom, H. C. S. (1954). The rational relationship between heating degree days and temperature. Monthly Weather Review, 82(1), 1-6. https://doi.org/10.1175/1520-0493(1954)082%3C0001:TRRBHD%3E2.0.CO;2
  • Yating, L., Pizer, W., & Wu, L. (2018). Climate change and residential electricity consumption in the Yangtze River Delta, China. PNAS, 116(2), 472-477. https://doi.org/10.1073/pnas.1804667115
  • Yoo, H., & Noh, K. (2009). Analysis of the cooling and heating degree days in the Seoul and Yeosu, where HadCM3 is applied. KIEAE Journal, 9(4), 11-16.
  • Zheng, Z., & Zhang, X. (2011). Characteristics of Heating Degree Days and Cooling Degree Days in Beijing During Last 50 Years. Proceedings of the 2011 Fourth International Joint Conference on Computational Sciences and Optimization (CSO '11), China, 930–933. https://doi.org/10.1109/CSO.2011.101
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-688ca715-1568-4732-bfd3-c677488a991e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.