PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal-mechanical-microstructural model of rolling and cooling of rails

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Cieplno-mechaniczno-mikrostrukturalny model walcowania i chłodzenia szyn
Języki publikacji
EN
Abstrakty
EN
The paper describes complex thermal-mechanical-microstructural model of rolling and cooling of rails. The equations describing microstructure evolution and phase transformations in rail steels were implemented in the Finite Element code, which simulates thermal and mechanical phenomena. Numerical tests of the model were performed. Simulations covered last three passes of the rolling process followed by controlled cooling of the rail head. The results included changes of the temperature during the whole manufacturing cycle, as well as changes of the austenite grain size during rolling and kinetics of the phase transformations during cooling. Numerical tests confirmed good predictive capabilities of the model.
PL
W artykule opisano cieplno-mechaniczno-mikrostrukmralny model walcowania i kontrolowanego chłodzenia szyn. Modele opisujące rozwój mikrostruktury i przemiany fazowe w stalach szynowych zostały zaimplementowane w programie z metody elementów skończonych, który symuluje zjawiska cieplne i mechaniczne. Przeprowadzone zostały numeryczne testy opracowanego programu. Symulacje objęły ostatnie trzy przepusty w procesie walcowania oraz proces kontrolowanego chłodzenia główki szyny po walcowaniu. W pracy przedstawiono wyniki w postaci rozkładów odkształceń i naprężeń oraz zmian temperatury w procesie walcowania, a także zmian wielkości ziarna austenitu w poszczególnych przepustach i kinetyki przemian fazowych w czasie chłodzenia. Numeryczne testy potwierdziły duże możliwości obliczeniowe modelu.
Słowa kluczowe
Wydawca
Rocznik
Strony
416--426
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • Ackert, R.J., Nott, M.A., 1987, Accelerated water cooling of railway rails in-line with the hot rolling mill, Proc. Symp. Accelerated Cooling of Roled Steels, eds, Ruddle, G.E., Crawley, A.F., Pergamon Press, Winnipeg, 359-372.
  • Boyadiev, LI., Thomson, P.F., Lam, Y.C., 1996, Computation of the diffusional transformation of continuously cooled austenite for predicting the coefficient of thermal expansion in the numerical analysis of thermal stress, ISIJ International, 36, 1413-1419.
  • Foster, A.D. Lin, J., Farrugia, D.C.J., Dean, T.A., 2007, Investigation into Damage Nucleation and Growth for a Free-Cutting Steel under Hot Rolling Conditions, Journal of Strain Analysis, 42, 227-235.
  • Franklin, F.J., Gahlot, A., Fletcher, D.L, Garnham, J.E., Davis, C, 2011, Three-dimensional modelling of rail steel microstructure and crack growth, Wear, 271, 357-363
  • Garbarz, B., Pickering, F.B., 1988, Effect of pearlite morphology on impact toughness of eutectoid steel containing vanadium, Materials Science and Technology, 4, 328-334.
  • Garnham, J.E., Davis, C.L., 2011,Very early stage rolling contact fatigue crack growth in pearlitic rail steels, Wear, 100-112
  • Glowacki, M., 1996, Simulation of rail rolling using the generalized plane-strain finite-element approach, Journal of Materials Processing Technology, 62, 229-234.
  • Glowacki, M., 2000, Thermal-mechanical-microstructural model of shape rolling, Proc. ECCOMAS Congress, Barcelona, CD ROM.
  • Glowacki, M., 2005, The mathematical modelling of thermo-mechanical processing of steel during multi-pass shape rolling, Journal of Materials Processing Technology, 168, 336-343.
  • Hensel, A., Spittel, T., 1979, Kraft- und Arbeitsbedarf Bildsamer Formgebungsverfahren, VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig.
  • Koistinen, D.P., Marburger, R.E., 1959, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels, Acta Metallurgica, 7, 59-69.
  • Kuziak, R., Cheng, Y.-W., Glowacki M., Pietrzyk, M., 1997, Modelling of the microstructure and mechanical properties of steels during thermomechanical processing, NIST Technical Note 1393, Boulder.
  • Kuziak, R., Zygmunt, T., 2012, A new method of rail head hardening of standard-gauge rails for improved wear and damage resistance, Steel Research International, 84, 13-19.
  • Kuziak, R., Molenda, R., Wrożyna, A., Kusiak, J., Pietrzyk, M., 2014, Experimental verification and validation of the phase transformation model used for optimization of heat treatment of rails, Computer Methods in Materials Science, 14, 53-63.
  • Lenard, J.G., Pietrzyk, M., Cser, L., 1999, Mathematical and physical simulation of the properties of hot rolled products, Elsevier, Amsterdam.
  • Lin, J., Liu, Y., Farrugia, D.C.J., Zhou, M., 2005, Development of dislocation based-unified material model for simulating microstructure evolution in multipass hot rolling, Philosophical Magazine A, 85, 1967-1987.
  • Ma, J.-H, Tao B.,Yao, X.-H., 2014, Corrugated waist rail micro-structure evolution simulation, Advanced Materials Research, 989-994, 425-428.
  • Morales, R.D., Lopez, A.G., Olivares, I.M., 1990, Heat transfer analysis during water spray cooling of steel rods, ISIJ Inernational, 30, 48-57.
  • Perez-Unzueta, A.J., Beynon, J.H., 1993, Microstructure and wear resistance of pearlitic rail steels, Wear, 162-164, 173-182.
  • Pei, N.N., Zhu, G.M., Li, B., Tao, G.M., Kang, Y.L., 2014, 3D Thermo-mechanical coupled simulation of whole rolling process for 60 kg/m heavy rail. Journal of Iron and Steel Research International, 21,1104-1110.
  • Pemach, M., 2014, Possibilities of application of numerical solution of the diffusion equation to modeling phase transformation during cooling of pearlitic steel, Computer Methods in Materials Science, 14, 228-235.
  • Pletz, M., Daves, W., Yao, W., Kubin, W., Scheriau, S., 2014,Multi-scale finite element modeling to describe rolling contact fatigue in a wheel-rail test rig, Tribology International, 80, 147-155.
  • Pietrzyk, M., Kuziak, R., 2000, Modeling of controlled cooling of rails after hot rolling, Proc. Conf. Rolling 2000, Vasteros, CD ROM.
  • Pietrzyk, M., Kondek, T., Majta, J., Zurek, A.K., 2000, Method of identification of the phase transformation model for steels, Proc. COM2000, Ottawa, CD ROM.
  • Pietrzyk, M., Kuziak, R., 2012, Numerical simulation of controlled cooling of rails as a tool for optimal design of this process, Computer Methods in Materials Science, 12, 233-243.
  • Sahay, S.S., Mohapatra, G, Totten, G.E., 2009, Overview of pearlitic rail steels: accelerated cooling, quenching, microstructure and mechanical properties, Journal of ASTM International, 6, 1-26. Scheil, E., 1935, Anlaufzeit der Austenitumwandlung, Archiv. fur Eissenhuttenwesen, 12, 565-567.
  • Szeliga, D., Kuziak, R., Zygmunt, T., Kusiak, J., Pietrzyk, M., 2014, Selection of parameters of the heat treatment thermal cycle for rails with respect to the wear resistance, Steel Research International, 85, 1070-1082.
  • Umemoto, M., Hiramatsu, A., Moriya, A., Watanabe, T., Nanba, S., Nakajima, N., Anan, G., Higo, Y., 1992, Computer modelling of phase transformation from work-hardened austenite, ISIJ International, 32, 306-315.
  • Wen, Z., Wu, L., Li, L., Jin, X., Zhu, M., 2011, Three-dimensional elastic-plastic stress analysis of wheel-rail rolling contact, Wear, 271, 426-436.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-688bea92-51c0-4009-b7ee-8ca8ce85c9a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.