PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simplified mathematical model of oxy-fuel combustion of municipal solid waste in the grate furnace: effect of different flue gas recirculation rates and comparison with conventional mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioenergy carbon capture technology (BioCCS or BECCS) plays a key role in the European Green Deal, which aims to decarbonize industry and energy sectors, resulting in the production of energy with negative CO2 emissions. Due to the biogenic origin of carbon contained in municipal solid waste (MSW), the application of carbon capture in waste incineration plants can be classified as BioCCS. Thus, this technology has attracted scientists' attention recently since it reduces excessive waste and emissions of carbon dioxide. Currently, there are four incineration plants in the Netherlands, Norway and Japan, in which CO2 capture is implemented; however, they are based on the post-combustion technique since it is the most mature method and not requires many changes in the system. Nevertheless, the separation of CO2 from the flue gas flow, which contains mostly nitrogen, is complex and causes a large drop in the total performance of the system. Oxy-fuel combustion technology involves the replacement of air as an oxidizer into high purity oxygen and recirculated exhaust gas. As a result, CO2-rich gas is produced that is practically ready for capture. The main goal of the study is to develop a mathematical model of oxy-waste combustion to answer the research questions, such as how the composition of oxidant that is supplied to the process affects the combustion performance. The model includes all important processes taking place within the chamber, such as pyrolysis, char burnout and gas combustion over the grate. The results of the work will contribute to the development of oxy-waste incineration plants and will be useful for design purposes.
Twórcy
  • Department of Thermal Technology, Silesian University of Technology, Konarskiego 22, Gliwice 44-100, Poland
  • Department of Thermal Technology, Silesian University of Technology, Konarskiego 22, Gliwice 44-100, Poland
  • SINTEF Energy Research, Sem Sælands vei 11, 7034 Trondheim, Norway
Bibliografia
  • [1] Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. World Bank Publications.
  • [2] Cucchiella, F., D’Adamo, I., & Gastaldi, M. (2017). Sustainable waste management: Waste to energy plant as an alternative to landfill. Energy Conversion and Management, 131, 18–31. doi:10.1016/j.enconman. 2016.11.012
  • [3] Kumar, A., & Samadder, S.R. (2017). A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management, 69, 407–422. doi: 10.1016/j.wasman.2017.08.046
  • [4] Makarichi, L., Jutidamrongphan, W., & Techato, K. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–21. doi: 10.1016/j.rser.2018.04.088
  • [5] Pour, N., Webley, P.A., & Cook, P.J. (2018). Potential for using municipal solid waste as a resource for bioenergy with carbon capture and storage (BECCS). International Journal of Greenhouse Gas Control, 68, 1–15. doi: 10.1016/j.ijggc.2017. 11.007
  • [6] Tanze, S.E., Blok, K., & Ramírez, A. (2021). Decarbonising industry via BECCS: Promising sectors, challenges, and technoeconomic limits of negative emissions. Current Sustainable Renewable Energy Reports, 8, 253–262. doi: 10.1007/s40518-021-00195-3
  • [7] Wienchol, P., Szlęk, A., & Ditaranto, M. (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. Energy, 198, 117352. doi: 10.1016/j.energy.2020.117352
  • [8] Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P., & Wall, T.F. (2005). Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science, 31(4), 283–307. doi: 10.1016/ j.pecs.2005.07.001
  • [9] Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., & Jensen, A.D. (2010). Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science, 36, 581–625. doi: 10.1016/j.pecs.2010.02.001
  • [10] Ding, G., He, B., Cao, Y., Wang, C., Su, L., Duan, Z., Song, J., Tong, W., & Li, X. (2018). Process simulation and optimization of municipal solid waste fired power plant with oxygen/carbon dioxide combustion for near zero carbon dioxide emission. Energy Conversion and Management, 157, 157–168. doi:10.1016/j.enconman. 2017.11.087
  • [11] Tang, Y.T., Ma, X.Q., Lai, Z.Y. & Chen, Y. (2013). Energy analysis and environmental impacts of a MSW oxy-fuel incineration power plant in China. Energy Policy, 60, 132–141.doi: 10.1016/j.enpol.2013.04.073
  • [12] Vilardi, G., & Verdone, N. (2022). Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process. Energy, 239(B), 122147. doi:10.1016/j.energy. 2021.122147
  • [13] Scheffknecht, G., Al-Makhadmeh, L., Schnell, U., & Maier, J. (2011). Oxy-fuel coal combustion — A review of the current state-of-the-art. International Journal of Greenhouse Gas Control, 5(1) 16–35. doi: 10.1016/ j.ijggc.2011.05.020
  • [14] Kosowska-Golachowska, M., Kijo-Kleczkowska, A., Luckos, A., Wolski, K., & Musiał, T. (2016). Oxy-combustion of biomass in a circulating fluidized bed. Archives of Thermodynamics, 37(1),17–30. doi: 10.1515/aoter-2016-0002
  • [15] Kindra, V.O., Milukov, I.A.Shevchenko, I.V., Shabalova, S.I., & Kovalev, D.S. (2021). Thermo-dynamic analysis of cycle arrangements of the coal-fired thermal power plants with carbon capture. Archives of Thermodynamics, 42(4), 103–121. doi:10.24425/ather. 2021.139653
  • [16] Lai, Z.Y., Ma, X.Q., Tang, Y.T., & Lin, H. (2011). A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA. Energy, 36(2), 819–824. doi: 10.1016/j.energy. 2010.12.033
  • [17] Tang, Y., Ma, X., Lai, Z., & Fan, Y. (2015). Thermogravimetric analyses of co-combustion of plastic, rubber, leather in N2/O2 and CO2/O2 atmospheres. Energy, 90(1), 1066–1074. doi: 10.1016/j.energy.2015.08.015
  • [18] Lai, Z.Y., Ma, X.Q., Tang, Y.T., Lin, H., & Chen, Y. (2012). Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 107, 444–450. doi: 10.1016/j.biortech.2011.12.039
  • [19] Tang, Y., Ma, X., Lai, Z., Zhou, D., & Chen, Y. (2013). Thermogravimetric characteristics and combustion emissions of rubbers and polyvinyl chloride in N2/O2 and CO2/O2 atmospheres. Fuel,104, 508–514. doi: 10.1016/j.fuel.2012. 06.047
  • [20] Wienchol, P., Korus, A., Szlęk, A., & Ditaranto, M. (2022). Thermogravimetric and kinetic study of thermal degradation of various types of municipal solid waste (MSW) under N2, CO2 and oxy-fuel conditions. Energy, 248, 123573. doi: 10.1016/j.energy.2022.123573
  • [21] Copik, P., Korus, Szlęk, A., & Ditaranto, M. (2023). A comparative study on thermochemical decomposition of lignocellulosic materials for energy recovery from waste : Monitoring of evolved gases, thermogravimetric, kinetic and surface analyses of produced chars. Energy, 285, 129328. doi: 10.1016/j.energy.2023.129328
  • [22] Becidan, M., Ditaranto, M., Carlsson, P., Bakken, J., Olsen, M.N.P., & Stuen, J. (2021). Oxyfuel combustion of a model MSW ‒ An experimental study. Energies, 14 (17), 5297. doi:10.3390/en14175297
  • [23] Mack, A., Maier, J., & Scheffknecht, G. (2022). Modification of a 240 kWth grate incineration system for oxyfuel combustion of wood chips. Journal of the Energy Institute, 104, 80–88. doi: doi:10.1016/j.joei. 2022.07.011
  • [24] Shin, D., & Choi, S. (2000). The combustion of simulated waste particles in a fixed bed. Combustion and Flame, 121(1-2), 167–180. doi: 10.1016/S0010-2180(99)00124-8
  • [25] Yang, W., Ryu, C., & Choi, S. (2004). Unsteady one-dimensional model for a bed combustion of solid fuels. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(8), 589–598. doi: 10.1243/0957650042584348.
  • [26] Zhou, H., Jensen, A.D., Glarborg, P., Jensen, P.A., & Kavaliauskas, A. (2005). Numerical modeling of straw combustion in a fixed bed. Fuel, 84(4), 389–403. doi: 10.1016/ j.fuel.2004.09.020
  • [27] Gu, T., Yin, C., Ma, W., & Chen, G. (2019). Municipal solid waste incineration in a packed bed: A comprehen-sive modeling study with experimental validation. Applied Energy, 247, 127–39. doi: 10.1016/j.apenergy. 2019.04.014
  • [28] Hoang, Q.N., Van Caneghem, J., Croymans, T., Pittoors, R., & Vanierschot, M. (2022). A novel comprehensive CFD-based model for municipal solid waste incinerators based on the porous medium approach. Fuel, 326, 124963. doi: doi: 10.1016/j.fuel.2022.124963
  • [29] Wissing, F., Wirtz, S., & Scherer, V. (2017). Simulating municipal solid waste incineration with a DEM/CFD method – Influences of waste properties, grate and furnace design. Fuel,206, 638–656. doi: 10.1016/j.fuel. 2017.06.037
  • [30] Yang, Y.B., Yamauchi, H., Nasserzadeh, V., & Swithenbank, J. (2003). Effects of fuel devolatilisation on the combustion of wood chips and incineration of simulated municipal solid wastes in a packed bed. Fuel, 82(18), 2205–2221. doi: 10.1016/S0016-2361(03) 00145-5
  • [31] Sun, R., Ismail, T.M., Ren, X., & Abd El-Salam, M. (2015). Numerical and experimental studies on effects of moisture content on combustion characteristics of simulated municipal solid wastes in a fixed bed. Waste Management, 39, 166–178. doi: 10.1016/j.wasman. 2015.02.018
  • [32] Xia, Z., Long, J., Yan, S., Bai, L., Du, H., & Chen, C. (2021). Two-fluid simulation of moving grate waste in-cinerator: Comparison of 2D and 3D bed models. Energy, 216, 119257. doi:10.1016/j.energy.2020. 119257
  • [33] Yu, Z., Ma, X., & Liao, Y. (2010). Mathematical modeling of combustion in a grate-fired boiler burning straw and effect of operating conditions under air- and oxygen-enriched atmospheres. Renewable Energy, 35(5), 895–903. doi: 10.1016/j.renene.2009.10.006
  • [34] Khodaei, H., Al-Abdeli, Y.M., Guzzomi, F., & Yeoh, G.H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88, 946–972. doi: 10.1016/j.energy.2015.05. 099
  • [35] Hoang, Q.N., Vanierschot, M., Blondeau, J., Croymans, T., Pittoors, R., & Van Caneghem, J. (2021). Review of numerical studies on thermal treatment of municipal solid waste in packed bed combustion. Fuel Communications, 7, 100013. doi: 10.1016/j.jfueco. 2021.100013
  • [36] Karim, R., Ahmed, A., Alhamid, A., Sarhan, R., & Naser, J. (2020). CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler. Renewable Energy, 146, 1416–1428. doi: 10.1016/j.renene. 2019.07.068
  • [37] Yang, Y.B., Goh, Y.R., Zakaria, R., Nasserzadeh, V., & Swithenbank, J. (2002). Mathematical modelling of MSW incineration on a travelling bed. Waste Management, 22(4), 369–380. doi: 10.1016/S0956-053X(02)00019-3
  • [38] Magnanelli, E., Tranås, O.L., Carlsson, P., Mosby, J., & Becidan, M. (2020). Dynamic modeling of municipal solid waste incineration. Energy, 209, 118426. doi: 10.1016/j.energy.2020.118426
  • [39] Becidan, M. (2007). Experimental studies on municipal solid waste and biomass pyrolysis. PhD thesis, Norwegian University of Science and Technology, Trondheim.
  • [40] Ismail, T.M., Abd El-Salam, M., El-Kady, M.A., & El-Haggar, S.M. (2014). Three dimensional model of transport and chemical late phenomena on a MSW incinerator. International Journal of Thermal Sciences, 77, 139–157. doi: 10.1016/j.ijthermalsci.2013.10.019
  • [41] Chen, L., Yong, S.Z., & Ghoniem, A.F. (2012). Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 38(2), 156–214. doi: 10.1016/j.pecs.2011.09.003
  • [42] Toporov, D.D. (2015). Combustion of pulverised coal in a mixture of oxygen and recycled flue gas. Elsevier. doi:10.1016/C2013-0-19301-4
  • [43] Hottel H.C., & Sarofim, A.F. (1967). Radiative transfer. McGraw-Hill, New York.
  • [44] Sadeghi, H., Hostikka, S., Crivelli, G., & Bordbar, H. (2021). Weighted-sum-of-gray-gases models for non-gray thermal radiation of hydrocarbon fuel vapors, CH4, CO and soot. Fire Safety Journal, 125, 103420. doi: 10.1016/j.firesaf.2021.103420
  • [45] Bordbar, M.H., Wecel, G., & Hyppänen, T. (2014). A line by line based weighted sum of gray gases model for inhomogeneous CO2-H2O mixture in oxy-fired combustion. Combustion and Flame, 161(9), 2435–2445. doi: 10.1016/j.combustflame.2014.03.013
  • [46] Alberti, M., Weber, R., & Mancini, M. (2020). New formulae for gray gas absorptivities of H2O, CO2, and CO. Journal of Quantitative Spectroscopy and Radiative Transfer, 255, 107227.doi: 10.1016/j.jqsrt. 2020.107227
  • [47] Vyazovkin, S. (2015). Isoconversional kinetics of thermally stimulated processes. Springer.
  • [48] Butmankiewicz, T., Dziugan, P., Kantorek, M., Karcz, H., & Wierzbicki, K. (2012). Thermal disposal of municipal waste on a grid - is it a proper technology? Archives of Waste Management and Environmental Protection, 14(2), 13–28 (in Polish). https://bibliotekanauki.pl/articles/357104
  • [49] Smart, J.P., Patel, R., & Riley, G.S. (2010). Oxy-fuel combustion of coal and biomass, the effect on radiative and convective heat transfer and burnout. Combustion and Flame, 157(12), 2230–2240. doi: 10.1016/ j.combustflame. 2010.07.013
  • [50] Mureddu, M., Dessì, F., Orsini, A., Ferrara, F., & Pettinau, A. (2018). Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel, 212, 626–637. doi:10.1016/j.fuel. 2017.10.005
  • [51] Skorek-Osikowska, A., Bartela, Ł., & Kotowicz, J. (2015). A comparative thermodynamic, economic and risk analysis concerning implementation of oxy-combustion power plants integrated with cryogenic and hybrid air separation units. Energy Conversion and Management, 92, 421–430. doi: 10.1016/j.enconman.2014.12.079
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6882f0a3-5860-4679-ba6c-735d0a50ca7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.