Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the locally one dimensional (LOD) method is used to solve the two dimensional time fractional diffusion equation. The fractional derivative is the Caputo fractional derivative of order α. The rate of convergence of the finite difference method is presented. It is seen that this method is in agreement with the obtained numerical solutions with acceptable central processing unit time (CPU time). Error estimates, numerical and exact results are tabulated. The graphics of errors are given.
Rocznik
Tom
Strony
5--16
Opis fizyczny
Bibliogr. 16 poz. rys., tab
Twórcy
autor
- Department Mathematics, Mugla Sitki Kocman University, Turkey
autor
- Department Mathematics, Mugla Sitki Kocman University, Turkey
Bibliografia
- [1] Metzler, R., & Klafter, J. (2004). The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional Dynamics. Journal of Physics A, 37, R161-R208.
- [2] Chen, T., & Wang, D. (2020). Combined application of blockchain technology in fractional calculus model of supply chain financial system. Chaos, Solitons & Fractals, 131, 109461.
- [3] Benson, D.A., Meerschaert, M.M., & Revielle, J. (2013). Fractional calculus in hydrologic modelling: a numerical perspective. Advances in Water Resources, 51, 479-497.
- [4] Luchko, Y. (2016). A new fractional calculus model for the two-dimensional anomalous diffusion and its analysis. Mathematical Modelling of Natura Phenımena, 11-3, 1-17.
- [5] Li, Z., Liu, L., Dehghan, S., Chen, Y., & Xue, D. (2017). A review and evaluation of numerical tools for fractional calculus and fractional order controls. International Journal of Controls, 90(6), 1165-1181.
- [6] Wu, G.C., & Baleanu D. (2013). Variational iteration method for fractional calculus – a universal approach by Laplace transform. Advances in Difference Equations, 18, 1-9.
- [7] Langlands, T. (2006). Fractional Dynamics. Physica A, 367, 136.
- [8] Narahari, B.A., & Hanneken J. (2004). Fractional radial diffusion in a cylinder. Journal of Molecular Liquids, 114, 147-151.
- [9] Zhuang, P., & Liu, F. (2007). Finite difference approximation for two-dimensional time fractional diffusion equation. Journal of Algorithms & Computational Technology, 1, 1.
- [10] Tadjeran, C., & Meerschaert, M.M. (2007). A second order accurate numerical method for the two-dimensional fractional diffusion equation. Journal of Computational Physics, 220, 813-823.
- [11] Meerschaert, M.M., Scheffler, H.P., & Tadjeran C. (2006). Finite difference methods for two-dimensional fractional dispersion equation. Journal of Computational Physics, 211, 249-261.
- [12] Dehghan, M. (1999). Implicit locally one-dimensional methods for two-dimensional diffusion with a non-local boundary condition. Mathematics and Computers in Simulation, 49, 331-349.
- [13] Chen, J., & Ge, Y. (2018). High order locally one dimensional methods for solving two-dimensional parabolic equation. Advence in Difference Equations, 361.
- [14] Soori, Z., & Aminataei, A. (2018). Effect of the nodes near boundary points on the stability analysis of sixth-order compact finite difference ADI scheme for the two-dimensional time fractional diffusion-wave equation. Transactions of A. Razmadze Mathematical Institute, 172, 582-605.
- [15] Kutluay, S., & Yağmurlu, N.M. (2012). The modified bi-quintic b-splines for solving the two dimensional unsteady burgers’ equation. European International Journal of Science and Technology, 1, 2.
- [16] Kutluay, S., & Yağmurlu, N.M. (2013). Derivation of the modified bi-quintic b-spline base functions: an application to Poisson equation. American Journal of Computational and Applied Mathematics, 3(1), 26-32.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68822322-50ad-42a3-861c-9e99226e743a