PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of jack-up platform for 6 MW WIND TURBINE: parametric analysis based dimensioning of platform legs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of the research conducted within the framework of the project entitled WIND-TU-PLA (ERA-NET, MARTEC II), the general aim of which was to design and analyse supporting structures for wind turbines intended for operation on the South Baltic area. The research part described in the article aimed at developing a preliminary design for a jack-up platform which can operate on water areas with depth of 40 m. The main task was to determine optimal dimensions of platform legs and the radius of their spacing. Two jack-up platform concepts differing by spacing radius and hull dimensions were designed with the intention to be used as a supporting structure for a 6-MW offshore wind turbine. For each concept, the parametric analysis was performed to determine optimal dimensions of platform legs (diameter Dleg and plating thickness tleg). Relevant calculations were performed to assess the movements of the platform with parameters given in Table 1 in conditions simulating the action of the most violent storm in recent 50 years. The obtained results, having the form of amplitudes of selected physical quantities, are shown in comprehensive charts in Fig. 6 and 7. Based on the critical stress values (corresponding to the yield stress), the area was defined in which the impact strength conditions are satisfied (Fig. 14). Then, the fatigue strength analysis was performed for two selected critical leg nodes (Fig. 12). Its results were used for defining the acceptable area with respect to structure’s fatigue (Fig. 14). Geometric parameters were determined which meet the adopted criteria, Table 6. The decisive criterion turned out to be the fatigue strength criterion, while the yield point criterion appeared to be an inactive constraint.
Rocznik
Tom
Strony
183--197
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology Faculty of Ocean Engineering and Ship Technology Narutowicza 11/12 80-233 Gdansk Poland
Bibliografia
  • 1. GWEC. (2018). Global Wind Statistics 2017. Global Wind Energy Council, 14 February 2018.
  • 2. http://www.polenergia.pl/pol/pl/strona/farmy-morskie (12/12/2018)
  • 3. https://www.equinor.com/en/what-we-do/hywind-wherethe-wind-takes-us.html (12/12/2018)
  • 4. Fukushima Floating Offshore Wind Farm Demonstration Project (Fukushima FORWARD). Source: http://www. fukushima-forward.jp/pdf/pamphlet3.pdf (13/12/2018)
  • 5. Fulton G.R., Malcolm D.J., Elwany H., Stewart W., Moroz E., Dempster H.: Semi-Submersible Platform and Anchor Foundation Systems for Wind Turbine Support. National Renewable Energy Laboratory (U.S.), Subcontract Report NREL/SR-500-40282, December 2007
  • 6. Bachynski E.E., Moan T. (2012). Design considerations for tension leg platform wind turbines. Marine Structures 29 (2012) 89–114.
  • 7. Żywicki J., Dymarski P., Ciba E., Dymarski C. (2017). Design of Structure of Tension Leg Platform for 6 MW Offshore Wind Turbine Based on Fem Analysis. Polish Maritime Research 24(s1), 230-241. https://doi.org/10.1515/ pomr-2017-0043
  • 8. Dymarski C., Dymarski P., Żywicki J. (2017). Technology Concept of TLP Platform Towing and Installation in Waters with Depth of 60 m. Polish Maritime Research 24(s1), 59-66. https://doi.org/10.1515/pomr-2017-0022
  • 9. Karimirad M., Moan T. (2012). Feasibility of the Application of a Spar-type Wind Turbine at a Moderate Water Depth. DeepWind, 19-20 January 2012, Trondheim, Norway. Energy Procedia 24(2012) 340-350
  • 10. Duan F., Hu Z., Niedzwecki J.M. (2016). Model test investigation of a spar floating wind turbine. Marine Structures 49 (2016) 76-96
  • 11. Dymarski P. Ciba E. (2017). Design of a cell-spar platform for a 6 MW wind turbine. Parametric analysis of the mooring system. Twenty First International Conference on Hydrodynamics in Ship Design and Operation - HYDRONAV, Gdańsk, 28-29 June 2017
  • 12. Yeter B., Garbatov Y., Soares C.G. (2014). Fatigue damage analysis of a fixed offshore wind turbine supporting structure. Developments in Maritime Transportation and Exploitation of Sea Resources, Taylor & Francis Group, London
  • 13. Velarde J., Bachynski E.E. (2017). Design and fatigue analysis of monopile foundations to support the DTU 10 MW offshore wind turbine. 14th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2017, 18-20 January 2017, Trondheim, Norway. Energy Procedia 137 (2017) 3–13
  • 14. Bogdaniuk M. (2017). Estimation of the fatigue life of the hull of TLP [in Polish]. Technical Report. Polish Register of Shipping, Gdańsk 2017
  • 15. Rozmarynowski B., Mikulski T. (2018). Selected problems of sensitivity and reliability of a jack-up platform. Polish Maritime Research 25(1(97)), 77-84. https://doi.org/10.2478/ pomr-2018-0009
  • 16. Dymarski C., Dymarski P., Żywicki J. (2015). DESIGN AND STRENGTH CALCULATIONS OF THE TRIPOD SUPPORT STRUCTURE FOR OFFSHORE POWER PLANT. Polish Maritime Research 22(1(85)), 36-46. https:// doi.org/10.1515/pomr-2015-0006
  • 17. Kahsin M., Łuczak M. (2015). Numerical Model Quality Assessment of Offshore Wind Turbine Supporting Structure Based on Experimental Data. Structural Health Monitoring 2015: System Reliability for Verification and Implementation: Proceedings of the 10th International Workshop on Structural Health Monitoring. Vol. 1/ ed. Fu-Kuo Chang, Fotis Kopsaftopoulos 439 North Duke Street · Lancaster, PA 17602-4967, U.S.A. : DEStech Publications, Inc., 2015, 2817-2824
  • 18. Wilson J.F.: Dynamics of Offshore Structures (2nd Edition). John Wiley & Sons, Inc., Hoboken, New Jersey, 2003
  • 19. Chandrasekaran S.: Dynamic Analysis and Design of Offshore Structures (Ocean Engineering & Oceanography). Springer, New Delhi, 2015
  • 20. Sarpkaya T. Wave Forces on Offshore Structures. Cambridge University Press, New York, 2010
  • 21. Offshore Standards DNV-OS-J103 (2013). Design of Floating Wind Turbine Structures. Det Norske Veritas, June 2013
  • 22. Niezgodziński M.E., Niezgodziński T.: Strength formulas, diagrams, and tables [in Polish]. WNT, Warszawa 2013.
  • 23. Dymarski P., Ciba E., Marcinkowski T. (2016). Effective method for determining environmental loads on supporting structures for offshore wind turbines. Polish Maritime Research 23(1(89)), 52-60. https://doi.org/10.1515/ pomr-2016-0008
  • 24. Recommended Practice DNV-RP-C205 (2010). Environmental Conditions and Environmental Loads. Det Norske Veritas, October 2010
  • 25. Sarpkaya T. (1986). In-line and transverse forces on smooth and rough cylinders in oscillatory flow at high Reynolds numbers, Monterey, California. Naval Postgraduate School
  • 26. Product Portfolio Overview. The Senvion 6.XM series.
  • 27. Jonkman J., Butterfield S., Musial W., Scott G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, Technical Report NREL/TP-500-38060 February 2009
  • 28. Kooijman H.J.T., Lindenburg C., Winkelaar D., van der Hooft E.L. (2003). DOWEC 6 MW PRE-DESIGN. Aeroelastic modelling of the DOWEC 6 MW pre-design in PHATAS. Report DOWEC-F1W2-HJK-01-046/9 (public version). September 2003
  • 29. Recommended Practice DNVGL-RP-C203 (2016). Fatigue design of offshore steel structures. DNV GL, April 2016
  • 30. Offshore Standards DNVGL-OS-C101 (2016). Design of offshore steel structures, general - LRFD method. April 2016
  • 31. EUROPEAN STANDARD IEC 61400-3 (2009). Wind turbines - Part 3: Design requirements for offshore wind turbines (IEC 61400-3:2009)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-687f5e5a-a71c-452d-998e-1bb2d9145a18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.