PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behavior of Vertically Confined Square Footing on Reinforced Sand under Centric Inclined Loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the behavior of vertically confined square footing on geogrid-reinforced sand under centric inclined loading through a series of experimental tests. The load was applied at 5°, 10° and 20° angles of inclination with the vertical. The tests were conducted on surface footing, footing with confiner and footing with confiner and horizontal reinforcement configurations subjected to inclined loading. Parametric variations like depth of the confiner (d=1B, 1.5B, 2B), number of geogrid layers (N; varies with variation in depth of confiner), and spacing between horizontal reinforcements (Y=0.25B, 0.5B, 0.75B, 1B) have been investigated at the top surface dimension of confiner (D) as 1.0B, 1.5B and 2.0B (where B is the width of the model footing). Results show that combined effect of confiner and horizontal reinforcement increases the ultimate bearing capacity of footing significantly compared to only confiner for all angle of inclinations. It can also be observed that load bearing capacities decrease with increase in angles of inclination and record the minimum improvement at 20° angle of inclination. Improvement in bearing capacities and reduction in settlement of footing analyzed in terms of bearing capacity ratio (BCR) and settlement reduction factor (SRF) are compared for all footing configurations. To summarize, the test results showed that confiner along with reinforcement can be considered as an economic ground improvement technique for shallow foundations to counter against heavily inclined loading.
Wydawca
Rocznik
Strony
224--238
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of civil Engineering, Indian Institute of Technology Roorkee (IITR), Roorkee-247667, India
  • Department of Civil Engineering, Indian Institute of Technology Roorkee (IITR), Roorkee-247667, India
Bibliografia
  • [1] Al-Aghbari, M.Y., Mohamedzein, Y.E.A. (2020). The use of skirts to improve the performance of a footing in sand, Int J Geotech Eng, 14(2), pp. 134–141. https://doi.org/10.1080/19386362.2018.1429702.
  • [2] Amarasinghe, M.P., De Silva, L.I.N., Gallage, C. (2018). The effect of lateral confinement on the settlement characteristics of shallow foundations on sand, Int J GEOMATE 15(51), pp. 258–265.
  • [3] Andersen, K.H., Jostad, H.P., Dyvik, R. (2008). Penetration resistance of offshore skirted foundations and anchors in dense sand, J Geotech Geoenviron Eng, 134(1), pp. 106–116. https://doi.org/106-116.10.1061/(ASCE)1090-0241(2008)134:1(106).
  • [4] Barari, A., Ghaseminejad, V., Ibsen, L.B. (2021). Failure envelopes for combined loading of skirted foundations in layered deposits, J Waterway, Port, Coastal, Ocean Eng 147(4), pp.04021008. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000639.
  • [5] Biswas, A., Muralikrishna, A., Dash, S.K. (2016). Behavior of geo-synthetic reinforced soil foundation systems supported on stiff clay subgrade, Int J Geomech, 16(5), pp. 04016007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000559.
  • [6] Bransby, M.F., Randolph, M.F. (1998). Combined loading of skirted foundations, Geotechnique, 48(5), pp. 637–655. https://doi.org/10.1680/geot.1998.48.5.637.
  • [7] Chen, G., Liu, R. (2018). Upper bound solutions of vertical bearing capacity of skirted mudmat in sand, Appl Ocean Res, 73, pp. 100–106. https://doi.org/10.1016/j.apor.2018.01.017.
  • [8] Dehkordi, P.F., Karim, U.F.A. (2020). Behaviour of circular footings confined by rigid base and geocell reinforcement, Arab J Geosci, 13, pp. 1100. https://doi.org/10.1007/s12517-020-06092-1
  • [9] Demir, A., Laman, A., Yildiz, A., Ornek, M. (2013). Large scale field tests on geogrid reinforced granular fill underlain by clay soil, Geotext Geomembr, 38, pp. 1–15. https://doi.org/10.1016/j.geotexmem.2012.05.007.
  • [10] Dixit, M.S., Patil, K.A. (2014) Effect of reinforcement on bearing capacity and settlement of sand, Electron J Geotech Eng, 19, pp. 1033–1046.
  • [11] Eid, H.T. (2013). Bearing capacity and settlement of skirted shallow foundations on sand, Int J Geomech, 13(5), pp. 645–652. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000237.
  • [12] Eid, H.T., Alansari, O.A., Odeh, A.M., Nasr, M.N., Sadek, H.A. (2009). Comparative study on the behavior of square foundations resting on confined sand, Can Geotech J, 46(4), pp. 438–453. https://doi.org/10.1139/T08-134
  • [13] Elsaied, A.E., Saleh, N.M., Elmashad, M.E. (2015). Behavior of circular footing resting on laterally confined granular reinforced soil, HBRC j, 11(2), pp. 240–245 https://doi.org/10.1016/j.hbrcj.2014.03.011.
  • [14] Fattah, M.Y., Shlash, K.T., Mohammed, H.A. (2014). Bearing capacity of rectangular footing on sandy soil bounded by a wall, Arab J Sci Eng, 39, pp. 7621–7633. https://doi.org/10.1007/s13369-014-1353-7.
  • [15] Harikumar, H., Sankar, N., Chandrakaran, S. (2016). Behavior of model footing resting on sand bed reinforced with multidirectional element, Geotext Geomembr, 44, pp.568–578. http://dx.doi.org/10.1016/j.geotexmem.2016.03.008.
  • [16] IS 1888 (1982). Indian standard method of load test on soil, Bureau of Indian Standard, India.
  • [17] IS 1498 (2007). Classification and identification of soils for general purposes, Bureau of Indian Standard, India.
  • [18] Jha, J.N. (2007). Effect of vertical reinforcement on bearing capacity of footing on sand. Indian Geotech J, 37(1), pp. 64–78.
  • [19] Jiang, C., Lin, L., Li, C., Li, T.B., He, J. (2020). The undrained vertical and horizontal bearing capacity of internal skirted foundation in clay, Eur J Environ Civ, 24(9), pp. 1302–1319. https://doi.org/10.1080/19648189.2018.1463296.
  • [20] Khing, K.H., Das, B.M., Puri, V.K., Cook, E.E., Yen, S.C. (1993). The bearing capacity of a strip foundation on geogrid-reinforced sand, Geotext Geomembr,12(4), pp. 351–361. https://doi.org/10.1016/0266-1144(93)90009-D.
  • [21] Krishna, A., Viswanath, B., Keshav, N. (2014) Performance of square footing resting on laterally confined sand. Int J Res Eng Tech 3(6), pp. 110–114.
  • [22] Kumar, A., Saran, S. (2003), Closely spaced strip footings on reinforced sand, J Geotech Geoenviron Eng, 129(7), pp. 660–664. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(660).
  • [23] Mandal, J.N., Manjunath, V.R. (1995) Bearing capacity of strip footing resting on reinforced sand subgrades, Constr Build Mater, 9(1), pp 35–38, https://doi.org/10.1016/0950-0618(95)92858-E.
  • [24] Ornek, M., Calisici, M., Turedi, Y., Kaya, N. (2021). Investigation of skirt effect on eccentrically loaded model strip footing using laboratory tests. J Soil Mech Foun Eng, 58(3), pp. 215–222. https://doi.org/10.1007/s11204-021-09731-1
  • [25] Rajagopal, K., Krishnaswamy, N.R., Latha, G.M. (1999). Behavior of sand confined with single and multiple geocells. Geotext Geomembr 17(3), pp. 171–184. https://doi.org/10.1016/S0266-1144(98)00034-X
  • [26] Raja, M.N.A., Shukla, S.K. (2020). Ultimate bearing capacity of strip footing resting on soil bed strengthened by wraparound geo-synthetic reinforcement technique, Geotext Geomembr, 48, pp. 867–874, https://doi.org/10.1016/j.geotexmem.2020.06.005.
  • [27] Roy, S.S., Deb, K. (2017). Bearing capacity of rectangular footings on multilayer geosynthetic-reinforced granular fill over soft soil, Int J Geomech, 17(9), pp. 04017069. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000959.
  • [28] Saleh, N.M., Alsaied, A.E., Elleboudy, A.M. (2008). Performance of skirted strip footing subjected to eccentric inclined load, Electron J Geotech Eng, 13, pp. 1–13.
  • [29] Santhoshkumara G., Ghosh, P. (2020). Ultimate bearing capacity of skirted foundation on cohesionless soil using slip line theory, Comput Geotech, 123, pp. 103573. https://doi.org/10.1016/j.compgeo.2020.103573.
  • [30] Sawwaf, M. El., Nazer, A. (2005). Behavior of circular footings resting on confined granular soil, J Geotech Geoenviron Eng, 131(3), pp 359–366. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(359).
  • [31] Selmi, M., Kormi, T., Hentati, A., Ali, N.B.H. (2019). Capacity assessment of offshore skirted foundations under HM combined loading using RFEM, Comput Geotech, 114, pp. 1–12. https://doi.org/10.1016/j.compgeo.2019.103148.
  • [32] Singh, V. K., Prasad, A., Aggarwal, R.K. (2007). Effect of soil confinement on ultimate bearing capacity of square footing under eccentric–inclined load, Electron J geotech Eng 12, pp. 1–14.
  • [33] Thakur, A., Dutta, R.K. (2020) Experimental and numerical studies of skirted hexagonal footings on three sands, SN Appl Sci, 2(3), pp. 1–11. https://doi.org/10.1007/s42452-020-2239-9.
  • [34] Wakil, A.Z.EL. (2013). Bearing capacity of skirt circular footing on sand. Alexandria Eng J 52(3), pp. 359–364. https://doi.org/10.1016/j.aej.2013.01.007.
  • [35] Yun, G., Bransby, M.F. (2007). The un-drained vertical bearing capacity of skirted foundations, Soils Found, 47(3), pp. 493–505. https://doi.org/10.3208/sandf.47.493.
  • [36] Zeydi, H., Boushehrian, A.H. (2020). Experimental and numerical study of bearing capacity of circular footings on layered soils with and without skirted sand piles, Iran J Sci Tech, 44, pp. 949–958. https://doi.org/10.1007/s40996-019-00284-w.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-687e426c-98c4-451e-800a-e8cfcce87f24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.