PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activation mechanism of tantalum niobium flotation by lead ions in a combined collector flotation system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of lead ions on the flotation activation of tantalum niobium ore (TNO) was studied by micro-flotation, adsorption capacity experiments, solution chemical composition calculations, and infrared spectral analysis. The experimental demonstrated that the combined collector of salicylhydroxamic acid (SHA) and ammonium dibutyl dithiophosphate (ADDP) resulted in a strong collection capacity for TNO in the presence of lead ions. The solution chemistry calculations determined that the dominant source of lead ions in the aqueous solution was Pb(OH)+ at a pH of 8, which was conducive to the adsorption and interaction of SHA and ADDP anions. In the lead ion activation system, the combined reagent co-adsorbed onto the TNO surface, causing a large negative shift in the zeta potential. The co-adsorption mechanism of the combined collector consisted of complex chemisorption between SHA and the TNO surface active particles, while the main adsorption of ADDP is physisorption.
Rocznik
Strony
29--38
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Guangdong Institute of Resources Comprehensive Utilization
autor
  • Guangdong Institute of Resources Comprehensive Utilization
autor
  • Guangdong Institute of Resources Comprehensive Utilization
autor
  • Guangdong Institute of Resources Comprehensive Utilization
autor
  • Guangdong Institute of Resources Comprehensive Utilization
autor
  • Guangdong Institute of Resources Comprehensive Utilization
Bibliografia
  • DEBLONDE, G.J.P., WEIGEL, V., BELLIER, Q., HOUDARD, R., DELVALLEE, F., BELAIR, S., BELTRAMI, D., 2016. Selective recovery of niobium and tantalum from low-grade concentrates using a simple and fluoride-free process. Separation and Purification Technology 162, 180-187.
  • HUANG, X., ZHU, T., DUAN, W., LIANG, S., LI, G., XIAO, W., 2020. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type. Journal of Hazardous Materials 381, 120998.
  • IBORRA-TORRES, A., KULAK, A.N., PALGRAVE, R.G., HYETT, G., 2020. Demonstration of Visible Light-Activated Photocatalytic Self-Cleaning by Thin Films of Perovskite Tantalum and Niobium Oxynitrides. ACS applied materials & interfaces 12, 33603-33612.
  • IZAWA, I., NOMURA, K., 2020. (Arylimido)niobium(V)-Alkylidenes, Nb(CHSiMe3)(NAr) OC(CF3)(3) (PMe3)(2), That Enable to Proceed Living Metathesis Polymerization of Internal Alkynes. Macromolecules 53, 5266-5279.
  • JI, J., 2004. Study on the reaction mechanism between ilmenorutile and alkylhydroxyoximate. Nonferrous Metals 4, 42-44.
  • LI, J., LI, P., WANG, D., LI, X., 2019. A review of niobium and tantalum metallogenic regularity in China. Chinese Science Bulletin-Chinese 64, 1545-1566.
  • LIU, M., YOU, Z., PENG, Z., LI, X., LI, G., 2016. Enrichment of rare earth and niobium from a REE-Nb-Fe associated ore via reductive roasting followed by magnetic separation. JOM 68, 567-576.
  • LIU, Z., XIU, T., DU, Y., WANG, Y., 2020. Leaching characteristics and kinetics of radioactive element uranium and thorium from Ta/Nb tailing. Journal of Radioanalytical and Nuclear Chemistry 323, 1197-1206.
  • LV, J., ZHANG, H., TONG, X., FAN, C., YANG, W., ZHENG, Y., 2017. Innovative methodology for recovering titanium and chromium from a raw ilmenite concentrate by magnetic separation after modifying magnetic properties. Journal of Hazardous Materials 325, 251-260.
  • MENG, Q., YUAN, Z., LI, L., LU, J., YANG, J., 2020. Modification mechanism of lead ions and its response to wolframite flotation using salicylhydroxamic acid. Powder Technology 366, 477-487.
  • NANDA, G., AWIN, E.W., GASYAK, T., KOROLEVA, E., FILIMONOV, A., VAKHRUSHEV, S., SUJITH, R., KUMAR, R., 2020. Temperature dependent conductivity and broadband dielectric response of precursor-derived Nb2O5. Ceramics International 46, 9512-9518.
  • PURCELL, W., POTGIETER, H., NETE, M., MNCULWANE, H., 2018. Possible methodology for niobium, tantalum and scandium separation in ferrocolumbite. Minerals Engineering 119, 57-66.
  • RODRIGUES, L.M., LIMA ZUTIN, E.A., SARTORI, E.M., MENDONCA, D.B.S., MENDONCA, G., CARVALHO, Y.R., Reis de Vasconcellos, L.M., 2020. Influence of Titanium Alloy Scaffolds on Enzymatic Defense against Oxidative Stress and Bone Marrow Cell Differentiation. International journal of biomaterials 2020, 1708214-1708214.
  • SONG, T., TANG, H.P., LI, Y., QIAN, M., 2020. Liquid metal dealloying of titanium-tantalum (Ti-Ta) alloy to fabricate ultrafine Ta ligament structures: A comparative study in molten copper (Cu) and Cu-based alloys. Corrosion Science 169, 108600.
  • THI HONG, N., LEE, M.S., 2019. A review on the separation of niobium and tantalum by solvent extraction. Mineral Processing and Extractive Metallurgy Review 40, 265-277.
  • UNKRIG, W., ZHE, F., TAMIM, R., OESTEN, F., KRATZERT, D., KROSSING, I., 2020. Cationic Niobium-Sandwich and Piano-Stool Complexes. Chemistry (Weinheim an der Bergstrasse, Germany). DOI:10.1002/chem.202003748.
  • XIAO, L., XU, X., LIU, S., SHEN, Z., HUANG, S., LIU, W., PENG, Y., HUANG, Y., LIU, J., NIE, Y., ZHAO, X., CAI, Z., 2020. Oxidation behaviour and microstructure of a dense MoSi2 ceramic coating on Ta substrate prepared using a novel two-step process. Journal of the European Ceramic Society 40, 3555-3561.
  • XIAO, W., CAO, P., LIANG, Q., HUANG, X., LI, K., ZHANG, Y., QIN, W., QIU, G., WANG, J., 2018. Adsorption behavior and mechanism of Bi(III) ions on rutile-water interface in the presence of nonyl hydroxamic acid. Transactions of Nonferrous Metals Society of China 28, 348-355.
  • XIAO, W., CAO, P., LIANG, Q., PENG, H., ZHAO, H., QIN, W., QIU, G., WANG, J., 2017. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment. Minerals 7, 113.
  • XIAO, W., REN, Y., YANG, J., CAO, P., WANG, J., QIN, W., QIU, G., 2019a. Adsorption mechanism of sodium oleate and styryl phosphonic acid on rutile and amphibole surfaces. Transactions of Nonferrous Metals Society of China 29, 1939-1947.
  • XIAO, W., ZHAO, Y., YANG, J., REN, Y., YANG, W., HUANG, X., ZHANG, L., 2019b. Effect of sodium oleate on the adsorption morphology and mechanism of nanobubbles on the mica surface. Langmuir 35, 9239-9245.
  • XIONG, W., DENG, J., ZHAO, K., WANG, W., WANG, Y., WEI, D., 2020. Bastnaesite, barite, and calcite flotation behaviors with salicylhydroxamic acid as the collector. Minerals 10, 282.
  • YUAN, Z., LU, J., WU, H., LIU, J., 2015. Mineralogical characterization and comprehensive utilization of micro-fine tantalum–niobium ores from Songzi. Rare Metals 34, 282-290.
  • ZHANG, T., QIN, W., 2015. Floc flotation of jamesonite fines in aqueous suspensions induced by ammonium dibutyl dithiophosphate. Journal of Central South University 22, 1232-1240.
  • ZHANG, T., QIN, W., YANG, C., HUANG, S., 2014. Floc flotation of marmatite fines in aqueous suspensions induced by butyl xanthate and ammonium dibutyl dithiophosphate. Transactions of Nonferrous Metals Society of China 24, 1578-1586.
  • ZHAO, W., LIU, D., FENG, Q., 2020. Enhancement of salicylhydroxamic acid adsorption by Pb(II) modified hemimorphite surfaces and its effect on floatability. Minerals Engineering 152, 106373.
  • ZHENG, Q., WU, F., CHEN, L., QIAN, F., YANG, K., GE, Z., SONG, P., FENG, J., 2020. Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum. Materials Letters 268.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-687cd4fe-939a-4d69-8dbc-08469864f4b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.