PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on effect of weld groove geometry on mechanical behavior and residual stresses variation in dissimilar welds of P92/SS304L steel for USC boilers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research article reports the correlation between microstructure, mechanical properties, and residual stresses of dissimilar weld joints (DWJs) between P92 martensitic steel and 304L austenitic stainless steel (ASS). The groove geometry plays a vital role in DWJs. Thus the effect of groove geometry on mechanical and microstructural properties was also investigated. The V-shape and narrow shape groove profile were implemented for P92/304L SS DWJs. The microstructural characteristic, tensile strength, micro-hardness, Charpy impact toughness and residual stresses were evaluated for both the groove geometry in as-weld (AW) and post-weld heat treatment (PWHT) (760 °C, 2 h) state. Microstructural observations performed using an optical microscope (OM), and scanning electron microscope (SEM) showed that high temperature during the weld thermal cycle leads to the formation of the coarse grain heat-affected zone (CGHAZ), fine grain HAZ (FGHAZ), and inter-critical HAZ (ICHAZ) across the P92 HAZ. The ERNiFeCr-2 (Inconel 718) welding consumable wire (filler rod) of diameter 2.4 mm was used for this investigation. The ERNiFeCr-2 weld fusion zone showed a fully austenitic microstructure with the formation of the secondary phases due to the solidification segregation. The EDS and SEM area mapping results indicated that the secondary phases in the inter-dendritic region contain a higher amount of the Mo and Nb than the matrix region. The ultimate tensile strength (UTS) of the as-weld and PWHT tensile specimen of the P92/304L SS DWJs was 630 and 621 MPa, respectively, for V-groove geometry specimens and 620 and 629 MPa, respectively, for narrow groove geometry specimens. The tensile fracture was experienced at the interface between weld metal and 304L base metal, and the UTS value of DWJs was very close to the UTS of the 304L SS. The abrupt variation in the micro-hardness value of the CGHAZ (456HV0.5), FGHAZ (375HV0.5), and ICHAZ (221HV0.5) was noticed in the as-weld state due to their distinguish microstructure characteristics. After PWHT, the micro-hardness value of the CGHAZ (255HV0.5), FGHAZ (236HV0.5), and ICHAZ (207HV0.5) was below the maximum allowable value of 265HV0.5 for P92 material because of the tempering of the martensite. The Charpy impact test indicated that the ERNiFeCr-2 weld fusion zone has a low toughness value of 33 J (AW) and 25 J (PWHT) for V-groove design and 35 J (AW) and 28 J (PWHT) for narrow groove design than that of the P92 and 304L parent metal. The impact toughness of the ERNiFeCr-2 filler weld was below the minimum requirement of 47 J (EN ISO 3580:2017). The tensile residual stresses were generated in the weld fusion zone due to the volumetric contraction during the solidification. The residual stresses developed in the case of the narrow groove design were less than that for the V-groove design due to the less quantity of weld metal available for volumetric contraction in the case of the narrow groove geometry. From comparing mechanical and microstructural properties obtained for V-groove and narrow groove geometry DWJs, it was found that narrow groove design reduces the overall heat affected zone span, and it requires less welding time and less heat input.
Rocznik
Strony
art. no. e140
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Indian Institute of Technology (IIT) Jodhpur, 342037, Karwar, Rajasthan, India
  • Department of Mechanical Engineering, Indian Institute of Technology (IIT) Jodhpur, 342037, Karwar, Rajasthan, India
Bibliografia
  • 1. Pandey C, Mahapatra MM, Kumar P. Effect of post weld heat treatments on fracture frontier and type IV cracking nature of the crept P91 welded sample. Mater Sci Eng A. 2018;731:249-65. https://doi.org/10.1016/j.msea.2018.06.038.
  • 2. Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J Manuf Process. 2020;58:377-406. https://doi.org/10.1016/j.jmapro.2020.08.019.
  • 3. Siefert JA, David SA, Siefert JA, David SA. Weldability and weld performance of candidate austenitic alloys for advanced ultrasupercritical fossil power plants Weldability and weld performance of candidate austenitic alloys for advanced ultrasupercritical fossil power plants. Sci Technol Weld Join. 2014;19:271-94.
  • 4. Li T, Yuan X, Li R, Xiong J, Tao S, Wu K. Microstructure and mechanical characteristics of dissimilar TIG welded 9% Cr heat-resistant steels joints. Int J Precis Eng Manuf. 2021;22:1007-19. https://doi.org/10.1007/s12541-021-00517-x.
  • 5. Kumar A, Pandey C. Autogenous laser-welded dissimilar joint of ferritic/martensitic P92 steel and Inconel 617 alloy: mechanism, microstructure, and mechanical properties. Arch Civ Mech Eng. 2022;22:39. https://doi.org/10.1007/s43452-021-00365-6.
  • 6. Wang HT, Wang GZ, Xuan FZ, Tu ST. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant. Eng Fail Anal. 2013;28:134-48. https://doi.org/10.1016/j.engfailanal.2012.10.005.
  • 7. Kepic J, Falat L, Lucia C. Correlation between microstructure and creep performance of martensitic/austenitic transition weldment in dependence of its post-weld heat treatment. Eng Fail Anal. 2014;40:141-52. https://doi.org/10.1016/j.engfailanal.2014.02.018.
  • 8. Kim M, Kwak S, Choi I, Lee Y, Suh J, Fleury E, Jung W, Son T. Materials Characterization High-temperature tensile and creep deformation of cross-weld specimens of weld joint between T92 martensitic and Super304H austenitic steels. Mater Charact. 2014;97:161-8. https://doi.org/10.1016/j.matchar.2014.09.011.
  • 9. Karthick K, Malarvizhi S, Balasubramanian V, Gourav Rao A. Tensile properties variation across the dissimilar metal weld joint between modified 9Cr-1Mo ferritic steel and 316LN stainless steel at RT and 550 °C. Metallogr Microstruct Anal. 2018;7:209-21. https://doi.org/10.1007/s13632-018-0430-9.
  • 10. Sirohi S, Gupta A, Pandey C, Vidyarthy RS, Guguloth K, Natu H. Investigation of the microstructure and mechanical properties of the laser welded joint of P22 and P91 steel. Opt Laser Technol. 2022;147: 107610. https://doi.org/10.1016/j.optlastec.2021.107610.
  • 11. Falat L, Čiripova L, Kepič J, Buršik J, Podstranska I. Correlation between microstructure and creep performance of martensitic/austenitic transition weldment in dependence of its post-weld heat treatment. Eng Fail Anal. 2014;40:141-52. https://doi.org/10.1016/j.engfailanal.2014.02.018.
  • 12. Sun Z. Feasibility of producing ferritic/austenitic dissimilar metal joints by high energy density laser beam process. Int J Press Vessel Pip. 1996;68:153-60. https://doi.org/10.1016/0308-0161(94)00048-4.
  • 13. DuPont JN, Kusko CS. Technical note: Martensite formation in austenitic/ferritic dissimilar alloy welds. Weld. J. (Miami, Fla). 86; 2007.
  • 14. Mortezaie A, Shamanian M. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel. Int J Press Vessel Pip. 2014;116:37-46. https://doi.org/10.1016/j.ijpvp.2014.01.002.
  • 15. Ye X, Hua X, Wang M, Lou S. Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding. J Mater Process Technol. 2015;222:381-90. https://doi.org/10.1016/j.jmatprotec.2015.03.031.
  • 16. Mishra D, Vignesh MK, Raj BG, Srungavarapu P, Devendranath Ramkumar K, Arivazhagan N, Narayanan S. Mechanical characterization of Monel 400 and 316 stainless steel weldments. Procedia Eng. 2014;75:24-8.
  • 17. Devendranath Ramkumar K, Sidharth D, Phani PP, Rajendran R, Giri Mugundan K, Narayanan S. Microstructure and properties of inconel 718 and AISI 416 laser welded joints. J Mater Process Technol. 2019;266:52-62.
  • 18. Wang Y, Li L, Kannan R. Transition from Type IV to Type I cracking in heat-treated grade 91 steel weldments. Mater Sci Eng A. 2018;714:1-13. https://doi.org/10.1016/j.msea.2017.12.088.
  • 19. Maduraimuthu V, Vasudevan M, Muthupandi V, Bhaduri AK. Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints. Metall Mater Trans B. 2012;43:123-32. https://doi.org/10.1007/s11663-011-9568-4.
  • 20. Dak G, Joshi J, Yadav A, Chakraborty A, Khanna N. Autogenous welding of copper pipe using orbital TIG welding technique for application as high vacuum boundary parts of nuclear fusion devices. Int J Press Vessel Pip. 2020;188:104225. https://doi.org/10.1016/j.ijpvp.2020.104225.
  • 21. Thakare JG, Pandey C, Gupta A, Taraphdar PK, Mahapatra MM. Role of the heterogeneity in microstructure on the mechanical performance of the Autogenous Gas Tungsten Arc ( GTA ) welded dissimilar joint of F/M P91 and SS304L steel. Fusion Eng Des. 2021;168: 112616. https://doi.org/10.1016/j.fusengdes.2021.112616.
  • 22. Sakthivel T, Sasikala G, Dash MK, Syamala Rao P. Creep deformation and rupture behavior of P92 steel weld joint fabricated by NG-TIG welding process. J Mater Eng Perform. 2019;28:4364-78.
  • 23. Kulkarni S, Rajamurugan G, Ghosh PK. Prominence of narrow groove on pulsed current GMA and SMA welding of thick wall austenitic stainless steel pipe. Trans Indian Inst Met. 2021;74:2297-312. https://doi.org/10.1007/s12666-021-02298-3.
  • 24. Feng J, Guo W, Irvine N, Li L. Understanding and elimination of process defects in narrow gap multi-pass fiber laser welding of ferritic steel sheets of 30 mm thickness. Int J Adv Manuf Technol. 2017;88:1821-30. https://doi.org/10.1007/s00170-016-8929-1.
  • 25. Nivas R, Singh PK, Das G, Das SK, Kumar S, Mahato B, Sivaprasad K, Ghosh M. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding. J Manuf Process. 2017;25:274-83. https://doi.org/10.1016/j.jmapro.2016.12.004.
  • 26. Giri A, Mahapatra MM, Sharma K, Singh PK. A study on the effect of weld groove designs on residual stresses in SS 304LN thick multipass pipe welds. Int J Steel Struct. 2017;17:65-75. https://doi.org/10.1007/s13296-016-0118-4.
  • 27. Pandey C, Kumar N, Sirohi S, Rajasekaran T, Kumar S, Kumar P. Study on the effect of the grain refinement on mechanical properties of the P92 welded joint. J Mater Eng Perform. 2022. https://doi.org/10.1007/s11665-021-06536-z.
  • 28. Das Banik S, Kumar S, Singh PK, Bhattacharya S, Mahapatra MM. Distortion and residual stresses in thick plate weld joint of austenitic stainless steel: Experiments and analysis. J Mater Process Technol. 2021;289:116944.
  • 29. Ren S, Li S, Wang Y, Deng D, Ma N. Predicting welding residual stress of a multi-pass P92 steel butt-welded joint with consideration of phase transformation and tempering effect. J Mater Eng Perform. 2019;28:7452-63. https://doi.org/10.1007/s11665-019-04470-9.
  • 30. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Effects of groove configuration and buttering layer on the through-thickness residual stress distribution in dissimilar welds. Int J Press Vessel Pip. 2021;192: 104392. https://doi.org/10.1016/j.ijpvp.2021.104392.
  • 31. Shin KY, Lee JW, Han JM, Lee KW, Kong BO, Hong HU. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel. Mater Charact. 2018;139:144-52. https://doi.org/10.1016/j.matchar.2018.02.039.
  • 32. David SA, Siefert JA, Feng Z. Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Sci Technol Weld Join. 2013;18:631-51. https://doi.org/10.1179/1362171813Y.00000 00152.
  • 33. Shakil M, Ahmad M, Tariq NH, Hasan BA, Akhter JI, Ahmed E, Mehmood M, Choudhry MA, Iqbal M. Microstructure and hardness studies of electron beam welded Inconel 625 and stainless steel 304L. Vacuum. 2014;110:121-6. https://doi.org/10.1016/j.vacuum.2014.08.016.
  • 34. Kou S. Welding metallurgy. New York: Wiley; 2002.
  • 35. Dev S, Ramkumar KD, Arivazhagan N, Rajendran R. Effect of continuous and pulsed current GTA welding on the performance of dissimilar welds involving aerospace grade alloys. Trans Indian Inst Met. 2017;70:729-39. https://doi.org/10.1007/s12666-017-1085-y.
  • 36. Silva CC, De Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ. New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol. 2013;2:228-37. https://doi.org/10.1016/j.jmrt.2013.02.008.
  • 37. Mageshkumar K, Kuppan P. Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds Microstructural evolution and precipitation behavior in heat affected zone of Inconel 625 and AISI 904L dissimilar welds. IOP Conf Series Mater Sci Eng. 2017;263(6):062073. https://doi.org/10.1088/1757-899X/263/6/062073.
  • 38. Kangazian J, Shamanian M, Ashrafi A. Dissimilar welding between SAF 2507 stainless steel and Incoloy 825 Ni-based alloy: The role of microstructure on corrosion behavior of the weld metals. J Manuf Process. 2017;29:376-88. https://doi.org/10.1016/j.jmapro.2017.08.012.
  • 39. DuPont JN, Lippold JC, Kiser SD. Welding metallurgy and weldability of nickel-base alloys. Hoboken: Wiley; 2009.
  • 40. Cortes R, Barragan ER, Lopez VH, Ambriz RR, Jaramillo D. Mechanical properties of Inconel 718 welds performed by gas tungsten arc welding. Int J Adv Manuf Technol. 2018;94:3949-61. https://doi.org/10.1007/s00170-017-1128-x.
  • 41. DuPont JN, Robino CV. Influence of Nb and C on the solidification microstructures of Fe-Ni-Cr alloys. Scr Mater. 1999;41:449-54. https://doi.org/10.1016/S1359-6462(99)00102-5.
  • 42. Gabrel J, Bendick W, Vandenberghe B, Lefebvre B, Gabrel J, Bendick W, Vandenberghe B, Lefebvre B. Status of development of VM 12 steel for tubular applications in advanced power plants. Energy Mater. 2016;1:218-22.
  • 43. Fu JW, Yang YS, Guo JJ. Formation of a blocky ferrite in Fe-Cr-Ni alloy during directional solidification. J Cryst Growth. 2009;311:3661-6. https://doi.org/10.1016/j.jcrysgro.2009.05.007.
  • 44. Cortes R, Rodriguez NK, Ambriz RR, Lopez VH, Ruiz A, Jaramillo D. Fatigue and crack growth behavior of Inconel 718-AL6XN dissimilar welds. Mater Sci Eng A. 2019;745:20-30. https://doi.org/10.1016/j.msea.2018.12.087.
  • 45. Kulkarni A, Dwivedi DK, Vasudevan M. Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. J Mater Process Technol. 2019;274: 116280. https://doi.org/10.1016/j.jmatprotec.2019.116280.
  • 46. Saini N, Mulik RS, Mohan M. Influence of filler metals and PWHT regime on the microstructure and mechanical property relationships of CSEF steels dissimilar welded joints. Int J Press Vessel Pip. 2019;170:1-9. https://doi.org/10.1016/j.ijpvp.2019.01.005.
  • 47. Chai X, Bundy JC, Amata MA, Zhang C, Zhang F, Chen S, Babu SS, Kou S. Creep rupture performance of welds of P91 pipe steel. Weld J. 2015;94:145s.
  • 48. Basturk SB, Dancer CEJ, McNally T. Role of dissimilar Ni-based ERNiCrMo-3 filler on the microstructure, mechanical properties and weld induced residual stresses of the ferritic/martensitic P91 steel welds joint. Int J Pressure Vessels Pip. 2020;1936:104743.
  • 49. Saedi AH, Hajjari E, Sadrossadat SM. Microstructural characterization and mechanical properties of TIG-welded API 5L X60 HSLA steel and AISI 310S stainless steel dissimilar joints. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:5497-508.
  • 50. Dak G, Pandey C. Experimental investigation on microstructure, mechanical properties, and residual stresses of dissimilar welded joint of martensitic P92 and AISI 304L austenitic stainless steel. Int J Press Vessel Pip. 2021;194: 104536. https://doi.org/10.1016/j.ijpvp.2021.104536.
  • 51. Kangazian J, Sayyar N, Shamanian M. Influence of microstructural features on the mechanical behavior of incoloy 825 welds. Metallogr Microstruct Anal. 2017;6:190-9. https://doi.org/10.1007/s13632-017-0353-x.
  • 52. Aminipour N, Derakhshandeh-Haghighi R. The effect of weld metal composition on microstructural and mechanical properties of dissimilar welds between Monel 400 and Inconel 600. J Mater Eng Perform. 2019;28:6111-24. https://doi.org/10.1007/s11665-019-04328-0.
  • 53. Dean D, Hidekazu M. Prediction of welding residual stress in multi-pass butt-welded modified 9Cr-1Mo steel pipe considering phase transformation effect. Comput Mater Sci. 2006;37:209-19. https://doi.org/10.1016/j.commatsci.2005.06.010.
  • 54. Zhong W, Lin JL, Chen Y, Li Z, An K, Sutton BJ, Heuser BJ. Microstructure, hardness, and residual stress of the dissimilar metal weldments of SA508-309L/308L-304L. Metall Mater Trans A Phys Metall Mater Sci. 2021;52:1927-38.
  • 55. Li S, Hu L, Dai P, Bi T, Deng D. Influence of the groove shape on welding residual stresses in P92/SUS304 dissimilar metal butt-welded joints. J Manuf Process. 2021;66:376-86. https://doi.org/10.1016/j.jmapro.2021.04.030.
  • 56. Zhao L, Liang J, Zhong Q, Yang C, Sun B, Du J. Numerical simulation on the effect of welding parameters on welding residual stresses in T92/S30432 dissimilar welded pipe. Adv Eng Softw. 2014;68:70-9. https://doi.org/10.1016/j.advengsoft.2013.12.004.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-687bf719-625d-47b4-9afb-7170f6048223
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.