PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring of concrete curing in extradosed bridge supported by numerical simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes a mathematical model of concrete curing taking into account kinetics of setting reactions. The numerical model is implemented in the author’s program that was used to monitor thermal effects recorded in the concrete bottom plate of the extradosed bridge. Numerical approach was verified by experimental measurements and used for assessment of the current compressive strength due to degree of hydration of fresh concrete.
Słowa kluczowe
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Azenh M., Sousa C., Faria R. and Neves A. Thermo–hygro–mechanical modelling of self-induced stresses during the service life of RC structures. Engineering Structures, 33, 2011, 3442–3453.
  • 2. Bentz D.P., Waller V. and De Larrard F. Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3D microstructural model. Cement Concrete Reasearch, 28(2), 1998, 285–297.
  • 3. Bjøntegaard Ø. Basis for and practical approaches to stress calculations and crack risk estimation in hardening concrete structures – State of the art., Norwegian Public Roads Administration, 2011.
  • 4. Carino N.J. and Lew H.S., The Maturity Method: From Theory to Application. Proc. of the Structures Congress & Exposition, Washington, D.C., American Society of Civil Engineers, Reston, Virginia, 2001.
  • 5. Cervera M., Faria R., Oliver J. and Prato T. Numerical modelling of concrete curing, regarding hydration and temperature phenomena. Computers and Structures, 80, 2002, 1511–1521.
  • 6. De Schutter G. and Taerwe L. General hydration model for Portland cement and blast furnace slag cement. Cement Concrete Reasearch, 25(3), 1995, 593–604.
  • 7. Di Luzio G. and Cusatis G. Solidification–microprestress–microplane (SMM) theory for concrete at early age: Theory, validation and application. International Journal of Solids and Structures, 50, 2013, 957–975.
  • 8. Kaminski W., Makowska K., Miśkiewicz M., Szulwic J. and Wilde K. System of monitoring of the Forest Opera in Sopot structure and roofing. Proc. of 15th International Multidisciplinary Scientific GeoConference SGEM 2015, SGEM2015 Conference Proceedings, 2 (2), 2015, 471-482.
  • 9. Kaszyńska M. Early age properties of highstrength/high-performance concrete. Cement and concrete composites, 24, 2002, 253-261.
  • 10. Kim J.-K., Moon Y.-H. and Eo S.-H. Compressive strength development of concrete with different curing time and temperature. Cement Concrete Reasearch, 28(2), 1998, 1761–1773.
  • 11. Mariak A. and Wilde K. Exponential Arrhenius equation as a function of concrete maturity. Monografie Technologii Betonu, IX Dni betonu, in polish, 2016, 611–626.
  • 12. Mariak A. and Wilde K., Estimating the strength of concrete based on the maturity function according to standards ASTM C1074-11. Materiały Budowlane 4, (in Polish), 2015, 68–71.
  • 13. Martinelli E., Koenders E.A.B. and Caggiano A. A numerical recipe for modelling hydration and heat flow in hardening concrete. Cement & Concrete Composites. 40, 2013, 48–58.
  • 14. Miśkiewicz M., Okraszewska R. and Pyrzowski Ł. Composite footbridge – synergy effect in cooperation between universities and industry. Proc. of 7th International Conference of Education, Research and Innovation, ICERI Proceedings, Seville, Spain 2014, 2897–2903.
  • 15. Neville A.M., Properties of concrete. Polski Cement. Kraków, 2000.
  • 16. Rucka M. and Wilde K. Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. Journal of Nondestructive Evaluation, 32 (4), 2013, 372–383.
  • 17. Rucka M. and Wilde K. Neuro-wavelet damage detection technique in beam, plate and shell structures with experimental validation. Journal of Theoretical and Applied Mechanics, 48(3), 2010, 579–604.
  • 18. Sohn H., Farrar C., Hemez F., Shunk D., Stinemates D., Nedler B. and Czarnecki J. A Review of Structural Monitoring Literature 1996-2001, Los Alamaos National Laboratory, 2004.
  • 19. Stefanowski T. Construction project of the expressway S7 section Miłomłyn-Olsztynek, bridge MS- 3/B DK-16, Transprojekt Gdański, in Polish, 2016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68781fbe-a175-43d1-bc9e-10f2a5587d96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.