Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New 1-parameter families of central limit distributions are investigated by means of random walks on trees associated with free groups under two kinds of states: one is Haagerup’s function and the other is a spherical function associated with unitary representations of the principal series. Those families give rise to deformations of Wigner’s semicircle distribution by non-symmetric probability measures.
Czasopismo
Rocznik
Tom
Strony
399--410
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Graduate School of Polymathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
Bibliografia
- [1] L. Accardi, V, Mastropietro and Y. G. Lu, Probab. Theory Mat. Statist. (1996), to appear.
- [2] M. Bożejko, M. Leinert and R. Speicher, Convolution and limit theorems for conditionally free random variables, 1991, to appear.
- [3] A. Figá-Talamanca and M. Picardello, Harmonic Analysis on Free Groups, Lecture Notes in Pure and Appl. Math. 87, Marcel Dekker, Inc., New York and Basel 1983.
- [4] N. Giri and W. von Waldenfels, An algebraic version of the central limit theorem, Z, Wahr. Verw. Gebiete 42 (1978), pp. 129-134.
- [5] U. Haager up, An example of a non-nuclear C*-algebra which has the metric approximation property, Invent. Math. 50 (1979), pp. 279-293.
- [6] Y. Hashimoto, A combinatorial approach to limit distributions of random walks: on discrete groups, 1996, submitted.
- [7] F. Hiai and D. Petz, Maximizing free entropy, preprint, 1996.
- [8] P. Hilton and J. Pederson, Catalan numbers, their generalization and their uses, Math. Intelligencer 13 (1991), pp. 64-75.
- [9] N Muraki, A new example of noncommutative “de Moivre-Laplace theorem”, in: Probability Theory and Mathematical Statistics: Proceedings of the Seventh Japan-Russia Symposium, S. Watanabe (Ed.), Tokyo 1995, World Scientific, 1996, pp. 353-362.
- [10] R. Speicher, A new example of “independence” and “white noise” Probab. Theory Related Fields 84 (1990), pp. 141-159.
- [11] D. Voiculescu, Symmetries of some reduced free product C*-algebras, in: Operator Algebras and Their Connections with Topology and Ergodic Theory, H. Araki (Ed.), Lecture Notes in Math. 1132, Springer, 1985, pp. 556-588.
- [12] — Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), pp. 323-346.
- [13] — Free noncommutative random variables, random matrices and the II1 factors of free groups, in: Quantum Probability and Related Topics. VI, L. Accardi (Ed.), World Scientific, 1991, pp. 473-487.
- [14] W. von Waldenfels, An algebraic central limit theorem in the anti-commuting case, Z. Wahr. Verw. Gebiete 42 (1978), pp. 135-140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68776af4-6ebe-4dc1-85f7-13a69e43543f