PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospects and opportunities for mussel Mytilus trossulus farming in the southern Baltic Sea (the Gulf of Gdańsk)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the Baltic Sea, where osmotic stress limits the growth of marine organisms, mariculture is driven primarily by the need to improve the status of the environment. To this end, several mussel farms have been attempted in selected areas, except the southern Baltic. The pilot culture of Mytilus trossulus was carried out with the use of a modified long-line system in the Gulf of Gdańsk in 2009–2012, providing the first evaluation of the mussel farming potential in this area. The growth rate of mussels (3.0–6.7 mm year-1) in the gulf was in the low range, but the mean wet biomass gain (1.50 kg m-1 normalized culture rope) was among the highest in the Baltic. After a two-year growth period, one tonne of mussels fixed in their soft tissues from 93 to 98 kg N t-1 and 11 kg P t-1. The cost-benefit analysis revealed a negative budget balance of production for human consumption, with a total income covering only 12.0% of the cumulative costs. Mussel farming in the gulf can therefore only be justified to improve the environmental quality if additional funding mechanisms are put in place to support farming activity.
Rocznik
Strony
53--77
Opis fizyczny
Bibliogr. 103 poz., fot., map., rys., tab.
Twórcy
  • University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
  • Swedish Board of Agriculture, Skeppsbrogatan 2, 553 29 Jönköping, Sweden
  • University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Department of Geomorphology and Quarternary Geology, ul. Bażyńskiego 4, 80-309 Gdańsk, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
Bibliografia
  • [1]. Ahsan, D. A., & Roth, E. (2010). Farmers’ perceived risks and risk management strategies in an emerging mussel aquaculture industry in Denmark. Marine Resource Economics, 25, 309-323. https://doi.org/10.5950/0738-1360-25.3.309
  • [2]. Árnason, J., Björnsdóttir, R., Larsen, B. K., Björnsson, B. T., Sundell, K., Hansen, A. C., Holen, E., Espe, M., Lindahl, O., & Kalsdóttir, S. (2015). Local fish feed ingredients for competitive and sustainable production of high-quality aquaculture feed. Nordic Innovation publication 2015:02. Nordic Innovation.
  • [3]. Antsulevich, A. E., Maximovich, N. V., & Vuorinen, I. (1999). Population structure, growth and reproduction of the common mussel (Mytilus edulis L.) off the Island of Seili (SW Finland). Boreal Environment Research, 4, 367-375.
  • [4]. Astorga España, M. S., Rodríguez Rodríguez, E. M., & Díaz Romero, C. (2007). Comparison of mineral and trace element concentrations in two mollusks from the Strait of Magellan (Chile). Journal of Food Composition and Analysis, 20, 273-279. https://doi.org/10.1016/j.jfca.2006.06.007
  • [5]. Bayne, B. L., & Worrall, C. M. (1980). Growth and production of mussels Mytilus edulis from two populations. Marine Ecology Progress Series, 3, 317-328. https://doi.org/10.3354/meps003317
  • [6]. Bielecka, L., Gaj, M., Mudrak, S., & Żmijewska, M. I. (2000). The seasonal and short-term variability of zooplankton taxonomic composition in the shallow coastal area of the Gulf of Gdańsk. Oceanological Studies, 29, 57-76.
  • [7]. Bonardelli, J. C. (2013). Technical and practical requirements for Baltic mussel culture. Reports of Aquabest project 4/2013 ISBN 978-952-303-049-7
  • [8]. Bonardelli, J. C., Kokaine, L., Ozolina, Z., Aigars, J., Purina, I., Persson, P., Persson, K., Hans Johnsson, H., & Minnhagen, S. (2019). Technical evaluation of submerged mussel farms in the Baltic Sea. Report of the Baltic Blue Growth project, WP3, GoA3.4. https://www.submariner-network.eu (access 10.05.2020).
  • [9]. Brodzicki, T., Zaucha, J., & Kwiatkowski, J. (2013). Study on blue growth, maritime policy and EU strategy for the Baltic Sea Region. Country fiche Poland. Institute for Development Working Papers, Working Paper no. 003/2014 (011) ver.2. Sopot.
  • [10]. Bucefalos project. (2015). https://webgate.ec.europa.eu/life (access 13.09.2021)
  • [11]. Buck, B. H., Ebeling, M. W., & Michler-Cieluch, T. (2010). Mussel cultivation as a co-use in offshore wind farms: Potential and economic feasibility. Aquaculture Economics & Management, 14(4), 255-281. https://doi.org/10.1080/13657305.2010.526018
  • [12]. Burkholder, J. M., & Shumway, S. E. (2011). Bivalve shellfish aquaculture and eutrophication. In S. E. Shumway (Ed.), Shellfish Aquaculture and the Environment (pp. 155-215). Wiley-Blackwell. https://doi.org/10.1002/9780470960967.ch7
  • [13]. Byron, C., Link, J., Costa-Pierce, B., & Bengtson, D. (2011). Calculating ecological carrying capacity of shellfish aquaculture using mass-balance modeling: Narragansett Bay, Rhode Island. Ecological Modelling, 222, 1743-1755. https://doi.org/10.1016/j.ecolmodel.2011.03.010
  • [14]. Carlsson, M. S., Holmer, M., & Petersen, J. K. (2009). Seasonal and spatial variations of benthic impacts of mussel longline farming in an eutrophic Danish Fjord, Limfjorden. Journal of Shellfish Research, 28(4), 791-801. https://doi.org/10.2983/035.028.0408
  • [15]. Chi, C. F., Zhang, J. S., Wu, C. W., Xu, M. Y., & Wang, B. (2012). Analysis and evaluation of nutrition composition of mussel. Advanced Materials Research, 554-556, 1455-1458. https://doi.org/10.4028/www.scientific.net/AMR.554-556.1455
  • [16]. Clausen, I., & Riisgård, H. U. (1996). Growth, filtration and respiration in the mussel Mytilus edulis: No regulation of the filter-pump to nutritional needs. Marine Ecology Progress Series, 141, 37-45. https://doi.org/10.3354/meps141037
  • [17]. Cuena Barron, L., & Wołowicz, M. (1980). A preliminary outline of the Mytilus edulis population from the Gdańsk Bay. Zeszyty Naukowe Wydziału Biologii i Nauk o Ziemi. Oceanografia, 8, 127-140.
  • [18]. de Grunt, L.S. (2019). Full-scale mussel farming to counteract eutrophication and create new Blue Growth opportunities: the Baltic Blue Growth project. EUCC’s magazine Coastal & Marine, special issue ‘Blue mussel farming for improving water quality in the Baltic Sea’, 28 (1): 18-19.
  • [19]. Dziubińska, A., & Janas, U. (2007). Submerged objects-a nice place to live and develop. Succession of fouling communities in the Gulf of Gdańsk, Southern Baltic. Oceanological and Hydrobiological Studies, 36, 65-78. https://doi.org/10.2478/v10009-007-0026-1
  • [20]. Dziubińska, A., & Szaniawska, A. (2010). Short-term study on early succession stages of fouling communities in the coastal zone of the Puck Bay (southern Baltic Sea). Oceanological and Hydrobiological Studies, 39, 3-16. https://doi.org/10.2478/v10009-010-0055-z
  • [21]. Engman, T. (2009). Musselodling i miljöns tjänst - Ett pilotprojekt i åländska vatten. Report for Åland Government.
  • [22]. FAO. (2016). The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All.
  • [23]. FAO. (2020). The State of Food and Agriculture 2020. Overcoming water challenges in agriculture. Rome. https://doi.org/10.4060/cb1447en
  • [24]. Gagnon, M. (2019). Self-organization and mechanical properties of mussel culture suspensions: A critical review. Aquacultural Engineering, 87, 102024. https://doi.org/10.1016/j.aquaeng.2019.102024
  • [25]. Gallardi, D. (2014). Effects of bivalve aquaculture on the environment and their possible mitigation: A review. Fisheries and Aquaculture Journal, 5, 105. https://doi.org/10.4172/2150-3508.1000105
  • [26]. Gil, F. M. (2009). Natura 2000 i akwakultura. Ministerstwo Środowiska. (in Polish)
  • [27]. Gosling, E. (2004). Bivalve Molluscs. Biology, Ecology and Culture. Blackwell Publishing.
  • [28]. Grant, J., Hatcher, A., Scott, D. B., Pocklington, P., Schafer, C. T., & Winters, G. V. (1995). A multidisciplinary approach to evaluating impacts of shellfish aquaculture on benthic communities. Estuaries, 18, 124-144. https://doi.org/10.2307/1352288
  • [29]. Grasshoff, K. Kremling, K. & Ehrhardt, M. (1999). Methods of seawater analysis. Third, completely revised edition. Wiley-VCH, Weinheim-New York-Chichester-Brisbane-Singapore-Toronto.
  • [30]. Gren, I.-M. (2019). The economic value of mussel farming for uncertain nutrient removal in the Baltic Sea. PLoS One, 14(6), e0218023. https://doi.org/10.1371/journal.pone.0218023 PMID:31199831
  • [31]. Gröndahl, F., Brandt, N., Karlsson, S. & Malmström, M.E. (2009). Sustainable use of Baltic Sea natural resources based on ecological engineering and biogas production. Ecosystems and Sustainable Development VII, 122, 153-161. https://doi.org/10.2495/ECO090151.
  • [32]. Hadberg, N., Kautsky, N., Kumblad, L., & Wikströmi, S. A. (2018). Limitations of using blue mussel farms as a nutrient reduction measure in the Baltic Sea. Baltic Sea Center Report 2/2018. Stockholm University.
  • [33]. Hargrave, B. T., Doucette, L. I., Cranford, P. J., Law, B. A., & Milligan, T. G. (2008). Influence of mussel aquaculture on sediment organic enrichment in a nutrient-rich coastal embayment. Marine Ecology Progress Series, 365, 137-149. https://doi.org/10.3354/meps07636
  • [34]. HELCOM, (2018a). State of the Baltic Sea - Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings No. 155
  • [35]. HELCOM, (2018b). Input of nutrients by the seven biggest rivers in the Baltic Sea region. Baltic Sea Environment Proceedings No.161
  • [36]. HELCOM, (2018c). Status of coastal fish communities in the Baltic Sea during 2011-2016 - the third thematic assessment. Baltic Sea Environment Proceedings No. 161
  • [37]. Ek Henning, H. & Åslund, M. (2012). Pilotmusselodlingar i Östergötlands skärgård - Kunskapsunderlag för storskaliga musselodlingar. Länsstyrelsen Östergötland, rapport 2012:8.
  • [38]. Hylén, A., Taylor, D., Kononets, M., Lindegarth, M., Stedt, A., Bonaglia, S., & Bergström, P. (2021). In situ characterization of benthic fluxes and denitrification efficiency in a newly re-established mussel farm. The Science of the Total Environment, 782, 146853. https://doi.org/10.1016/j.scitotenv.2021.146853 PMID:33848863
  • [39]. Jansen, H., Strand, Ø., Strohmeier, T., Krogness, C., Verdegem, M., & Smaal, A. (2011). Seasonal variability in nutrient regeneration by mussel Mytilus edulis rope culture in oligotrophic systems. Marine Ecology Progress Series, 431, 137-149. https://doi.org/10.3354/meps09095
  • [40]. Johns, T. G., & Hickman, R. W. (1985). A manual for mussel farming in semi-exposed coastal waters; with a report on the mussel research at Te Kaha, eastern Bay of Plenty, New Zealand, 1977-82. Fisheries Research Division Occasional Publication No. 50.
  • [41]. Jönsson, L. (2009). Mussel meal in poultry diets-with focus on organic production. PhD thesis, Swedish University of Agricultural Sciences, Uppsala. 57 pp.
  • [42]. Jović, M., Mandić, M., Šljivić-Ivanović, M., & Smičiklas, I. (2019). Recent trends in application of shell waste from mariculture. Studia Marina, 32(1), 47-62. https://doi.org/10.5281/zenodo.3274471
  • [43]. Kaspar, H. F., Gillespie, P. A., Boyer, I. C., & MacKenzie, A. L. (1985). Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand. Marine Biology, 85, 127-136. https://doi.org/10.1007/BF00397431
  • [44]. Kautsky, N. (1982). Growth and size structure in a Baltic Mytilus edulis population. Marine Biology, 68, 117-133. https://doi.org/10.1007/BF00397599
  • [45]. Kautsky, N., Johannesson, K., & Tedengren, M. (1990). Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations. I. Growth and morphology. Marine Ecology Progress Series, 59, 203-210. https://doi.org/10.3354/meps059203
  • [46]. Kotta, J., Futter, M., Kaasik, A., Liversage, K., Rätsep, M., Barboza, F. R., Bergström, L., Bergström, P., Bobsien, I., Díaz, E., Herkül, K., Jonsson, P. R., Korpinen, S., Kraufvelin, P., Krost, P., Lindahl, O., Lindegarth, M., Lyngsgaard, M. M., Mühl, M., Virtanen, E. (2020). Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. The Science of the Total Environment, 709, 136144. https://doi.org/10.1016/j.scitotenv.2019.136144 PMID:31905569
  • [47]. Kraufvelin, P., & Díaz, E. R. (2015). Sediment macrofauna communities at a small mussel farm in the northern Baltic proper. Boreal Environment Research, 20(3), 378-390.
  • [48]. Kruk-Dowgiałło, L., & Szaniawska, A. (2008). Gulf of Gdańsk and Puck Bay. Part. II. B Eastern Baltic Coast. In U. Schiewer (Ed.), Ecology of Baltic Coastal Waters. Ecological Studies 197 (pp. 139-162). Springer-Verlag.
  • [49]. Lees, D., Younger, A., & Doré, B. (2010). Depuration and relaying. In G. Rees, K. Pond, D. Kay, J. Bartram, & J. Santo Domingo (Eds.), Safe Management of Shellfish and Harvest Waters (pp. 145-181). IWA Publishing.
  • [50]. Lindahl, O. (2011). Mussel farming as a tool for re-eutrophication of coastal waters: experiences from Sweden. In S. E. Shumway (Ed.), Shellfish Aquaculture and the Environment (pp. 213-275). Wiley-Blackwell., https://doi.org/10.1002/9780470960967.ch8
  • [51]. Lindahl, O. (2012). Mussel farming as an environmental measure in the Baltic. Final report project 2181, Baltic Sea 2020 Foundation.
  • [52]. Lindahl, O. (2013). Mussel meal production based on mussels from the Baltic Sea. Reports of Aquabest project 6/2013. Finnish Game and Fisheries Research Institute.
  • [53]. Lindahl, O., & Kollberg, S. (2008). How mussels can improve coastal water quality. Bioscience Explained, 5(1), 1-14.
  • [54]. Lindahl, O., & Kollberg, S. (2009). Can the EU agri-environmental aid program be extended into the coastal zone to combat eutrophication? Hydrobiologia, 629, 59-64. https://doi.org/10.1007/s10750-009-9771-3
  • [55]. Lindahl, O., Hart, R., Hernroth, B., Kollberg, S., Loo, L.-O., Olrog, L., Rehnstam-Holm, A.-S., Svensson, J., Svensson, S., & Syversen, U. (2005). Improving marine water quality by mussel farming: A profitable solution for Swedish society. Ambio, 34(2), 131-138. https://doi.org/10.1579/0044-7447-34.2.131 PMID:15865310
  • [56]. Loo, L.-O., & Rosenberg, R. (1983). Mytilus edulis culture: Growth and production in western Sweden. Aquaculture (Amsterdam, Netherlands), 35, 137-150. https://doi.org/10.1016/0044-8486(83)90081-9
  • [57]. Mazur-Marzec, H., Bertos-Fortis, M., Toruńska-Sitarz, A., Fidor, A., & Legrand, C. (2016). Chemical and genetic diversity of Nodularia spumigena from the Baltic Sea. Marine Drugs, 14(11), 209. https://doi.org/10.3390/md14110209 PMID:27834904
  • [58]. Mazzola, A., & Sarà, G. (2001). The effect of fish farming organic waste on food availability for bivalve molluscs (Gaeta Gulf, Central Tyrrhenian, MED): Stable carbon isotope analysis. Aquaculture (Amsterdam, Netherlands), 192, 361-379. https://doi.org/10.1016/S0044-8486(00)00463-4
  • [59]. McKindsey, C. W., Archambault, P., Callier, M. D., & Olivier, F. (2011). Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: A review. Canadian Journal of Zoology, 89, 622-664. https://doi.org/10.1139/z11-037
  • [60]. Minnhagen, S. (2017). Farming of blue mussels in the Baltic Sea. A review of pilot studies 2007- 2016. www.balticbluegrowth.eu (access 13.09.2021)
  • [61]. Moltke Lyngsgaard, M., Svensson, H., Carl, J., Dolmer, P., Wallach, T., & Lejbach, A. (2017). Substrate tests at Musholm 2016 - mussel growth in the western Baltic Sea. Report from Baltic Blue Growth project. https://www.submariner-network.eu (access 13.09.2021).
  • [62]. Muminović, M. (2010). Domestic feed sources to farmed Arctic charr (Salvelinus alpinus). An investigation of nutritional implications and impact on the ecological footprint. MSc thesis. Norwegian University of Life Sciences, Ås, pp. 33.
  • [63]. Morrisey, D. J., Cole, R. G., Davey, N. K., Handley, S. J., Bradley, A., Brown, S. N., & Madarasz, A. L. (2006). Abundance and diversity of fish on mussel farms in New Zealand. Aquaculture (Amsterdam, Netherlands), 252, 277-288. https://doi.org/10.1016/j.aquaculture.2005.06.047
  • [64]. Nkemka, V. N., & Murto, M. (2013). Two-stage anaerobic dry digestion of blue mussel and reed. Renewable Energy, 50, 359-364. https://doi.org/10.1016/j.renene.2012.06.041
  • [65]. Newell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspension feeding bivalve molluscs: A review. Journal of Shellfish Research, 23, 51-61.
  • [66]. Nielsen, P., Cranford, P. J., Maar, M., & Petersen, J. K. (2016). Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark. Aquaculture Environment Interactions, 8, 311-329. https://doi.org/10.3354/aei00175
  • [67]. Olofsson, E., Nord, M. & Kappling, M. (2014). Suitable localities for mussel farming in the County of Kalmar with regard to results from experimental farms in 2013. Reports of Aquabest project 19.
  • [68]. Ozolina, Z., & Kokaine, L. (2019). Socioeconomic impact of mussel farming in coastal areas of Baltic Sea. Report of the Baltic Blue Growth project, WP3, GoA5.4. https://www.submariner-network.eu (access 01.05.2021).
  • [69]. Petersen, J. K., Saurel, C., Nielsen, P., & Timmermann, K. (2016). The use of shellfish for eutrophication control. Aquaculture International, 24, 857-878. https://doi.org/10.1007/s10499-015-9953-0
  • [70]. Przedrzymirska, J., Olenycz, M., Turski, J., Pardus, L., Lazić, M., Zatczak, M., Zaucha, J., Licznerska-Bereśniewicz, J., & Rakowska, I. (2018). Common methodological approach on addressing the mussel farms in maritime spatial plans (MSP), Report of the Baltic Blue Growth project, WP5, GoA5.1, https://www.submariner-network.eu (access 09.09.2021).
  • [71]. Remiszewska-Skwarek, A., Fudala-Książek, S.& Łuczkiewicz, A. (2016). Wpływ ścieków przemysłowych na energochłonność i efektywność procesów technologicznych w komunalnej oczyszczalni ścieków. [in Polish]. Rocznik Ochrona Środowiska, 18, 110-121.
  • [72]. Riisgård, H. U., Lüskow, F., Pleissner, D., Lundgreen, K., & López, M. Á. P. (2013). Effect of salinity on filtration rates of mussels Mytilus edulis with special emphasis on dwarfed mussels from the low-saline Central Baltic Sea. Helgoland Marine Research, 67, 591-598. https://doi.org/10.1007/s10152-013-0347-2
  • [73]. Ritzenhofen, L., Buer, A. L., Gyraite, G., Dahlke, S., Klemmstein, A., & Schernewski, G. (2021). -Blue mussel (Mytilus spp.) cultivation in mesohaline eutrophied inner coastal waters: Mitigation potential, threats and cost effectiveness. PeerJ, 9, e11247. https://doi.org/10.7717/peerj.11247 PMID:34055477
  • [74]. Rurnohr, H., Brey, T., & Ankar, S. (1987). A compilation of biometric conversion factors for benthlc invertebrates of the Baltlc Sea. Baltic Marine Biology Publication No. 9, l-56.
  • [75]. Sami Alias, I. (2014). Eksperymentalna hodowla omułka Mytilus trossulus w Zatoce Gdańskiej dla celów środowiskowych i przemysłowych. PhD thesis, Uniwersytet Gdański. Gdynia, pp. 102 (in Polish).
  • [76]. Sanders, T., Schmittmann, L., Nascimento-Schulze, J. C., & Melzner, F. (2018). High calcification costs limit mussel growth at low salinity. Frontiers in Marine Science, 5, 352. https://doi.org/10.3389/fmars.2018.00352
  • [77]. Schernewski, G., Stybel, N., & Neumann, T. (2012). Zebra mussel farming in the Szczecin (Oder) Lagoon: Water-quality objectives and cost-effectiveness. Ecology and Society, 17(2), 4. https://doi.org/10.5751/ES-04644-170204
  • [78]. Schröder, T., Stank, J., Schernewski, G., & Krost, P. (2014). The impact of a mussel farm on water transparency in the Kiel Fjord. Ocean and Coastal Management, 101, 42-52. https://doi.org/10.1016/j.ocecoaman.2014.04.034
  • [79]. Schultz-Zehden, A., & Matczak, M. (2013). The SUBMARINER Compendium. http://www.submariner-project.eu (access 20.03.2020).
  • [80]. Schultz-Zehden, A., Steele, A., & Weiget, B. (2019). How to turn ecosystem payments to Baltic mussel farms into reality? www.balticbluegrowth.eu (access 20.03.2020).
  • [81]. Shumway, S. E., Davis, C., Downey, R., Karney, R., Kraeuter, J. N., Rheault, R. N., & Wikfors, G. H. (2003). Shellfish aquaculture-in praise of sustainable economies and environments. World Aquaculture, 34, 15-17.
  • [82]. Sokołowski, A. (2009). Tracing the flow of organic matter based upon dual stable isotope technique, and trophic transfer of trace metals in benthic food web of the Gulf of Gdańsk (the southern Baltic Sea). Wydawnictwo Uniwersytetu Gdańskiego, Sopot.
  • [83]. Sokołowski, A., Ziółkowska, M. & Zgrundo, A. (2015). Habitat-related patterns of soft-bottom macrofaunal assemblages in a brackish, low-diversity system (southern Baltic Sea). Journal of Sea Research, 103, 93-102. https://doi.org/10.1016/j.seares.2015.06.017
  • [84]. Sokołowski, A., Ziółkowska, M., Balazy, P., Kukliński, P., & Plichta, I. (2017a). Seasonal and multi-annual patterns of colonisation and growth of sessile benthic fauna on artificial substrates in the brackish low-diversity system of the Baltic Sea. Hydrobiologia, 790, 183-200. https://doi.org/10.1007/s10750-016-3043-9
  • [85]. Sokołowski, A., Ziółkowska, M., Balazy, P., Plichta, I., Kukliński, P., & Mudrak-Cegiołka, S. (2017b). Recruitment pattern of benthic fauna on artificial substrates in brackish low-diversity system (the Baltic Sea). Hydrobiologia, 784, 125-141. https://doi.org/10.1007/s10750-016-2862-z
  • [86]. Spångberg, J., Jönsson, H., & Tidåker, P. (2013). Bringing nutrients from sea to land - mussels as fertiliser from a life cycle perspective. Journal of Cleaner Production, 51, 234-244. https://doi.org/10.1016/j.jclepro.2013.01.011
  • [87]. Stadmark, J., & Conley, D. J. (2011). Mussel farming as a nutrient reduction measure in the Baltic Sea: Consideration of nutrient biogeochemical cycles. Marine Pollution Bulletin, 62(7), 1385-1388. https://doi.org/10.1016/j.marpolbul.2011.05.001 PMID:21620422
  • [88]. Stenton-Dozey, J. M. E., Jackson, L. F., & Busby, A. J. (1999). Impact of mussel culture on microbenthic community structure in Saldahana Bay, South Africa. Marine Pollution Bulletin, 39, 357-366. https://doi.org/10.1016/S0025-326X(98)00180-5
  • [89]. Suplicy, F. M. (2020). A review of the multiple benefits of mussel farming. Reviews in Aquaculture, 12, 204-223. https://doi.org/10.1111/raq.12313
  • [90]. Tamelander, T., Spilling, K., & Winder, M. (2017). Organic matter export to the seafloor in the Baltic Sea: Drivers of change and future projections. Ambio, 46, 842-851. https://doi.org/10.1007/s13280-017-0930-x PMID:28647909
  • [91]. Taylor, D., Saurel, C., Nielsen, P., & Petersen, J. K. (2019). Production characteristics and optimization of mitigation mussel culture. Frontiers in Marine Science, 6, 698. https://doi.org/10.3389/fmars.2019.00698
  • [92]. ten Brink, P., Lutchman, I., Bassi, S., Speck, S., Sheavly, S., Register, K., & Woolaway, C. (2009). Guidelines on the Use of Market-based Instruments to Address the Problem of Marine Litter. Institute for European Environmental Policy (IEEP). Brussels and Sheavly Consultants.
  • [93]. Theede, H. (1963). Experimentelle Untersuchungen iiber die Filtrationsleistung der Miesmuschel Mytilus edulis L. Kieler Meeresforschung, 19, 20-21.
  • [94]. Turski, J. (2017). Maritime Spatial Planning and the blue, zebra mussels. A case study for the Polish coastline based on the overview of existing examples from Canada and Australia. Bulletin of the Maritime Institute in Gdańsk, 32(1), 72-82. https://doi.org/10.5604/01.3001.0010.1081
  • [95]. Wang, Z. H., Liang, J. L., & Zhang, S. Y. (2015). Comparison of pelagic and benthic fish assemblages in mussel farming habitat. Chinese Journal of Ecology, 34, 753-759.
  • [96]. Wennström, M. & Engman, T. (2014). Underlag för ansöka n/delprojekt; lntergrerad fisk - och musselodling. The Baltic Blue Growth seed money project final report, appendix E13.
  • [97]. Westerbom, M., Kilpi, M., & Mustonen, O. (2002). Blue mussels, Mytilus edulis, at the edge of the range: Population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Marine Biology, 140, 991-999. https://doi.org/10.1007/s00227-001-0765-6
  • [98]. Wilding, T. A., & Nickell, T. D. (2013). Changes in benthos associated with mussel (Mytilus edulis L.) farms on the west-coast of Scotland. PLoS One, 8, e68313. https://doi.org/10.1371/journal.pone.0068313 PMID:23874583
  • [99]. Wołowicz, M., Sokołowski, A., Bawazir, A. S., & Lasota, R. (2006). Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdańsk). Limnology and Oceanography, 51, 580-590. https://doi.org/10.4319/lo.2006.51.1_part_2.0580
  • [100]. Wikström, S. A., Hedberg, N., Kautsky, N., Kumblad, L., Ehrnsten, E., Gustafsson, B., Humborg, C., Norkko, A., & Stadmark, J. (2020). Letter to editor regarding Kotta et al. 2020: Cleaning up seas using blue growth initiatives: Mussel farming for eutrophication control in the Baltic Sea. The Science of the Total Environment, 727, 138665. https://doi.org/10.1016/j.scitotenv.2020.138665 PMID:32334226
  • [101]. Vaquer-Sunyer, R., & Duarte, C. M. (2010). Sulfide exposure accelerates hypoxia-driven mortality. Limnology and Oceanography, 55, 1075-1082. https://doi.org/10.4319/lo.2010.55.3.1075
  • [102]. Varennes, É., Hanssen, S. A., Bonardelli, J. C., & Guillemette, M. (2013). Sea duck predation in mussel farms: The best nets for excluding common eiders safely and efficiently. Aquaculture Environment Interactions, 4, 31-39. https://doi.org/10.3354/aei00072
  • [103]. Vinther, H. F., Laursen, J. S., & Holmer, M. (2008). Negative effects of blue mussel (Mytilus edulis) presence in eelgrass (Zostera marina) beds in Flensborg fjord, Denmark. Estuarine, Coastal and Shelf Science, 77(1), 91-103. https://doi.org/10.1016/j.ecss.2007.09.007
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68764c10-dcfa-4922-ad76-39ab1369a84c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.