PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioactive glasses enriched with zinc and strontium: synthesis, characterization, cytocompatibility with osteoblasts and antibacterial properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the presented work was to characterize the new obtained bioglasses and assess their biological performance in vitro. Bioglasses were produced using the sol-gel method in the SiO2-P2O5-CaO system, for the purpose as composite ingredients. Their chemical composition was enriched with ZnO to introduce antibacterial properties and SrO with osteoinductive effect. The properties of bioglasses were compared and the effect of chemical composition and particle size on their biological properties was assessed. Methods: The bioglasses were evaluated via TG-DTA, FTIR, SEM-EDS analyses before and after incubation in SBF solution. LDH and WST-1 tests were used to determine the level of cytotoxicity of the tested bioglasses on hFOB1.19 osteoblasts. Results: The results show that the developed bioglasses release Ca2+, are bioactive in SBF solution, not cytotoxic and show antibacterial activity in contact with Pseudomonas aeruginosa and Staphylococcus aureus strains. Bioglasses enriched with ZnO show the highest bactericidal activity. All tested bioglasses enhanced hFOB 1.19 cells proliferation. Particle size has a lower effect on biological performance of the bioglasses than their chemical composition. Conclusions: The conducted research showed that bioglass modification with SrO and ZnO can be considered particularly for the development of biomaterials supporting bone regeneration and the treatment of infected bone defects.
Słowa kluczowe
Rocznik
Strony
69--80
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Biomaterials Research Group, Łukasiewicz Research Network – Institute of Ceramic and Building Materials, Kraków, Poland
  • Department of in vitro studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
autor
  • Department of in vitro studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
  • Biomaterials Research Group, Łukasiewicz Research Network – Institute of Ceramic and Building Materials, Kraków, Poland
  • Department of in vitro studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
  • Department of in vitro studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
  • Department of in vitro studies, Institute of Biotechnology and Molecular Medicine, Gdańsk, Poland
  • Biomaterials Research Group, Łukasiewicz Research Network – Institute of Ceramic and Building Materials, Kraków, Poland
  • Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] BAHEIRAEI N., EYNI H., BAKHSHI B., NAJAFLOO R., RABIEE N., Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration, Sci. Rep., 2021, 11, 1–9, DOI: 10.1038/s41598-021-88058-1.
  • [2] BALASUBRAMANIAN P., STROBEL L.A., KNESER U., BOCCACCINI A.R., Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications, Biomed. Glas., 2015, 1, 51–69, DOI: 10.1515/bglass-2015-0006.
  • [3] BEYERSMANN D., Homeostasis and Cellular Functions of Zinc, Materwiss. Werksttech., 2002, 33, 764–769, DOI: 10.1002/ mawe.200290008.
  • [4] CACCIOTTI I., Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties, J. Mater. Sci., 2017, 52, 8812–8831, DOI: 10.1007/s10853-017-1010-0.
  • [5] CIOŁEK L., BIERNAT M., JAEGERMANN Z., ZACZYŃSKA E., CZARNY A., JASTRZĘBSKA A., The studies of cytotoxicity and antibacterial activity of composites with ZnO-doped bioglass, Int. J. Appl. Ceram. Technol., 2019, 16, 541–551, DOI: 10.1111/ ijac.13144.
  • [6] DESHMUKH K., KOVÁŘÍK T., KŘENEK T., DOCHEVA D., STICH T., POLA J., Recent advances and future perspectives of sol-gel derived porous bioactive glasses: a review, RSC Adv., 2020, 10, 33782–33835, DOI: 10.1039/d0ra04287k.
  • [7] EL-KADY A.M., KAMEL N.A., ELNASHAR M.M., FARAG M.M., Production of bioactive glass/chitosan scaffolds by freezegelation for optimized vancomycin delivery: Effectiveness of glass presence on controlling the drug release kinetics, J. Drug. Deliv. Sci. Technol., 2021, 66, 102779, DOI: 10.1016/ j.jddst.2021.102779.
  • [8] FREDHOLM Y.C., KARPUKHINA N., BRAUER D.S., JONES J.R., LAW R.V., HILL R.G., Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation, J. R. Soc. Interface, 2012, 9, 880–889, DOI: 10.1098/rsif.2011.0387.
  • [9] GENTLEMAN E., FREDHOLM Y.C., JELL G., LOTFIBAKHSHAIESH N., O’DONNELL M.D., HILL R.G. et al., The effects of strontiumsubstituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, 2010, 31, 3949–3956, DOI: 10.1016/ j.biomaterials.2010.01.121.
  • [10] GERHARDT L.C., BOCCACCINI A.R., Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Materials (Basel), 2010, 3, 3867–3910, DOI: 10.3390/ma3073867.
  • [11] GORUSTOVICH A.A., STEIMETZ T., CABRINI R.L., PORTO LÓPEZ J.M., Osteoconductivity of strontium-doped bioactive glass particles: A histomorphometric study in rats, J. Biomed. Mater. Res. – Part A, 2010, 92, 232–237, DOI: 10.1002/ jbm.a.32355.
  • [12] HAJDUGA M.B., BOBIŃSKI R., DUTKA M., ULMAN-WŁODARZ I., BUJOK J., PAJĄK C. et al., Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc doped bioglass, Acta Bioeng. Biomech., 2021, 23, https://doi.org/10.37190/ABB-01766-2020-03
  • [13] HENCH L.L., WHEELER D.L., GREENSPAN D.C., Molecular Control of Bioactivity in Sol-Gel Glasses, J. Sol-Gel Sci. Technol., 1998, 13, 245–250, DOI: 10.1023/a:1008643303888.
  • [14] HESARAKI S., GHOLAMI M., VAZEHRAD S., SHAHRABI S., The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO-SrO-SiO2-P2O5 quaternary system, Mater. Sci. Eng. C, 2010, 30, 383–390, DOI: 10.1016/j.msec.2009.12.001.
  • [15] HU S., CHANG J., LIU M., NING C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater. Sci. Mater. Med., 2009, 20, 281– 286, DOI: 10.1007/s10856-008-3564-5.
  • [16] ISAAC J., NOHRA J., LAO J., JALLOT E., NEDELEC J.M., BERDAL A., Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells, Eur. Cells Mater., 2011, 21, 130–143, DOI: 10.22203/eCM.v021a11.
  • [17] ITO A., KAWAMURA H., OTSUKA M., IKEUCHI M., OHGUSHI H., ISHIKAWA K. et al., Zinc-releasing calcium phosphate for stimulating bone formation, Mater. Sci. Eng. C, 2002, 22, 21–25, DOI: 10.1016/S0928-4931(02)00108-X.
  • [18] KARGOZAR S., LOTFIBAKHSHAIESH N., AI J., MOZAFARI M., BROUKI M.P., HAMZEHLOU S. et al., Strontium- and cobaltsubstituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities, Acta Biomater., 2017, 58,502–514, DOI: 10.1016/j.actbio.2017.06.021.
  • [19] KARGOZAR S., MONTAZERIAN M., HAMZEHLOU S., KIM H.W., BAINO F., Mesoporous bioactive glasses: Promising platforms for antibacterial strategies, Acta Biomater., 2018, 81, 1–19, DOI: 10.1016/j.actbio.2018.09.052.
  • [20] LIU X., DING C., CHU P.K., Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials, 2004, 25, 1755–1761, DOI: 10.1016/j.biomaterials.2003.08.024.
  • [21] LUKITO D., XUE J.M., WANG J., In vitro bioactivity assessment of 70 (wt.)%SiO2–30 (wt.)%CaO bioactive glasses in simulated body fluid, Mater. Lett., 2005, 59, 3267–3271, DOI: 10.1016/j.matlet.2005.05.055.
  • [22] ŁĄCZKA M., CHOLEWA-KOWALSKA K., OSYCZKA A.M., Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants, Ceram. Int., 2016, 42, 14313–14325, DOI: 10.1016/j.ceramint.2016.06.077.
  • [23] MAO L., XIA L., CHANG J., LIU J., JIANG L., WU C. et al., The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration, Acta Biomater., 2017, 61, 217–232, DOI: 10.1016/ j.actbio.2017.08.015.
  • [24] MOGHANIAN A., FIROOZI S., TAHRIRI M., Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceram. Int., 2017, 43, 14880–14890, DOI: 10.1016/j.ceramint.2017.08.004.
  • [25] MULANI M.S., KAMBLE E.E., KUMKAR S.N., TAWRE M.S., PARDESI K.R., Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review, Front. Microbiol., 2019, 10, DOI: 10.3389/fmicb.2019.00539.
  • [26] MURPHY S., WREN A.W., TOWLER M.R., BOYD D., The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility, J. Mater. Sci. Mater. Med., 2010, 21, 2827–2834, DOI: 10.1007/s10856-010-4139-9.
  • [27] O’DONNELL M.D., CANDARLIOGLU P.L., MILLER C.A., GENTLEMAN E., STEVENS M.M., Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, J. Mater. Chem., 2010, 20, 8934, DOI: 10.1039/c0jm01139h.
  • [28] PASQUET J., CHEVALIER Y., PELLETIER J., COUVAL E., BOUVIER D., BOLZINGER M.A., The contribution of zinc ions to the antimicrobial activity of zinc oxide, Colloids Surfaces A Physicochem Eng. Asp., 2014, 457, 263–274, DOI: 10.1016/ j.colsurfa.2014.05.057.
  • [29] SAINO E., GRANDI S., QUARTARONE E., MALIARDI V., GALLI D., BLOISE N., In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass, Eur. Cells Mater., 2011, 21, 59–72, DOI: 10.22203/eCM.v021a05.
  • [30] SARAVANAPAVAN P., HENCH L.L., Mesoporous calcium silicate glasses. I. Synthesis, J. Non. Cryst. Solids, 2003, 318, 1–13, DOI: 10.1016/S0022-3093(02)01864-1.
  • [31] SERGI R., BELLUCCI D., CANNILLO V., A review of bioactive glass/natural polymer composites: State of the art., Materials (Basel), 2020, 13, 1–38, DOI: 10.3390/ma13235560.
  • [32] DA SILVA B.L., ABUÇAFY M.P., MANAIA E.B., JUNIOR J.A.O., CHIARI-ANDRÉO B.G., PIETRO R.C.L.R. et al., Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview, Int. J. Nanomedicine, 2019, 14, 9395–9410, DOI: 10.2147/IJN.S216204.
  • [33] STROBEL L.A., HILD N., MOHN D., STARK W.J., HOPPE A., GBURECK U., Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells, J. Nanoparticle Res., 2013, 15, DOI: 10.1007/s11051-013-1780-5.
  • [34] VAID C., MURUGAVEL S., DAS C., ASOKAN S., Mesoporous bioactive glass and glass-ceramics: Influence of the local structure on in vitro bioactivity, Microporous Mesoporous Mater., 2014, 186, 46–56, DOI: 10.1016/j.micromeso.2013.11.027.
  • [35] VUKOMANOVIC M., GAZVODA L., ANICIC N., RUBERT M., SUVOROV D., MÜLLER R., Multi-doped apatite: Strontium, magnesium, gallium and zinc ions synergistically affect osteogenic stimulation in human mesenchymal cells important for bone tissue engineering, Biomater. Adv., 2022, 140, 213051, DOI: 10.1016/j.bioadv.2022.213051.
  • [36] WU C., RAMASWAMY Y., CHANG J., WOODS J., CHEN Y., ZREIQAT H., The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn-Ca-Si system ceramics, J. Biomed. Mater. Res. – Part B Appl. Biomater., 2008, 87, 346–53, DOI: 10.1002/jbm.b.31109.
  • [37] YAN M., SONG Y., WONG C.P., HARDIN K., HO E., Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells, J. Nutr., 2008, 138, 667–673, DOI: 10.1093/jn/138.4.667.
  • [38] ZHANG D., HUPA M., HUPA L., In situ pH within particle beds of bioactive glasses, Acta Biomater., 2008, 4, 1498–1505, DOI: 10.1016/j.actbio.2008.04.007.
  • [39] ZHENG K., BOCCACCINI A.R., Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci., 2017, 249, 363–373, DOI: 10.1016/j.cis.2017.03.008.
  • [40] ZHENG K., LU M., RUTKOWSKI B., DAI X., YANG Y., TACCARDI N., ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties, J. Mater. Chem. B, 2016, 4, 7936–7949, DOI: 10.1039/C6TB02053D.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6875fd09-60f8-47d7-a73c-8858e05ab11d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.