PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the influence of high‑order ionospheric delay on GPS undifferenced and uncombined precise point positioning

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High active ionosphere periods have a sizeable ionospheric delay in signal transmission. The high-order ionospheric delay (HOI) severely influences GPS precise point positioning (PPP). The phase-smoothed pseudorange method is used to calculate the slant total electron content, and IGRF-13 (the 13th International Geomagnetic Reference Field) is introduced to calculate high-order ionospheric delay. UDUC PPP with HOI constraint is realized, and the solutions without and with HOI correction are obtained. The time series of the positioning residuals are used to explore the white noise and zero mean characteristics of code and phase. Based on the Jarque–Bera test and t test, the influence of HOI on PPP residuals in the active ionosphere period is researched. The results show that HOI is at the millimeter level, and its influence on UDUC PPP is at the submillimeter level. Thus, HOI needs to be considered in UDUC PPP for the millimeter application.
Czasopismo
Rocznik
Strony
1983--1994
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Institute of Geospatial Information, PLA Information Engineering University, Zhengzhou 450001, China
  • Institute of Geospatial Information, PLA Information Engineering University, Zhengzhou 450001, China
autor
  • Zhejiang A&F University, Hangzhou 310000, China
autor
  • Xi’an Research Institute of Surveying and Mapping, Xi’an 710000, China
autor
  • Institute of Geospatial Information, PLA Information Engineering University, Zhengzhou 450001, China
Bibliografia
  • 1. Akgul V, Gurbuz G, Kutoglu SH et al (2020) Effects of the high-order ionospheric delay on GPS-based tropospheric parameter estimations in Turkey. Remote Sens 12:3569
  • 2. Banville S, Sieradzki R, Hoque M et al (2017) On the estimation of higher-order ionospheric effects in precise point positioning. GPS Solut 21:1817–1828
  • 3. Datta-Barua S, Walter T, Blanch J, et al (2006) Bounding higher order ionosphere errors for the dual frequency GPS user. In: Proceedings of the 19th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2006), vol 43, pp 1-15
  • 4. de Dieu NJ, Sivavaraprasad G, Ratnam DV (2021) Performance analysis of IRI-2016 model TEC predictions over Northern and Southern Hemispheric IGS stations during descending phase of solar cycle 24. Acta Geophys 69:1509–1527. https://doi.org/10.1007/s11600-021-00618-1
  • 5. Ding W, Ou J, Li Z (2014) A real-time dynamic PPP rapid reinitialization method with additional ionospheric delay constraints. Chinese J Geophys 57:1720–1731. https://doi.org/10.6038/cjg20140604
  • 6. Elmas ZG, Aquino M, Marques H et al (2011) Higher order ionospheric effects in GNSS positioning in the European region. Ann Geophys 29:1383–1399
  • 7. Fritsche M, Dietrich R, Knöfel C et al (2005) Impact of higher-order ionospheric terms on GPS estimates. Geophys Res Lett 32. https://doi.org/10.1029/2005GL024342
  • 8. Hadas T, Krypiak-Gregorczyk A, Hernández-Pajares M et al (2017) Impact and implementation of higher-order ionospheric effects on precise GNSS applications. J Geophys Res Solid Earth 122:9420–9436
  • 9. Hernández-Pajares M, Juan J, Sanz J et al (2007) Second-order ionospheric term in GPS: implementation and impact on geodetic estimates. J Geophys Res Solid Earth 112:B08417
  • 10. Ji S, Weng D, Wang Z et al (2014) Second-order ionospheric effect on PPP over Hong Kong. J Atmos Solar Terr Phys 119:184–192
  • 11. Jin R, Jin S, Feng G (2012) M_DCB: matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut 16:541–548
  • 12. Li B, Zhang Z (2019b) Several kinematic data processing methods for time-correlated observations. J Geod Geoinf Sci 2:1–9. https://doi.org/10.11947/j.JGGS.2019.0401
  • 13. Li B, Zhang Z, Shen Y et al (2018) A procedure for the significance testing of unmodeled errors in GNSS observations. J Geod 92:1171–1186
  • 14. Li B, Wang M, Wang Y et al (2019a) Model assessment of GNSS-based regional TEC modeling: polynomial, trigonometric series, spherical harmonic and multi-surface function. Acta Geod Geophys 54:333–357. https://doi.org/10.1007/s40328-019-00262-8
  • 15. Liu X, Yuan Y, Huo X (2010) Analysis model and method of ionospheric second-order term delay on GPS positioning. Chin Sci Bull 55:1162–1167
  • 16. Marques HA, Monico JF, Aquino M (2011) RINEX_HO: second- and third-order ionospheric corrections for RINEX observation files. GPS Solut 15:305–314
  • 17. Nie W (2019) Multi-system GNSS global ionospheric monitoring and unified processing of differential code bias. Shandong University
  • 18. Odijk D (2003) Ionosphere-free phase combinations for modernized GPS. J Surv Eng 129:165–173. https://doi.org/10.1061/(ASCE)0733-9453(2003)129:4(165)
  • 19. Odijk D, Zhang B, Khodabandeh A et al (2016) On the estimability of parameters in undifferenced, uncombined GN network and PPP-RTK user models by means of S-system theory. J Geod 90:15–44
  • 20. Petrie EJ, King MA, Moore P et al (2010) Higher-order ionospheric effects on the GPS reference frame and velocities. J Geophys Res Solid Earth 115:B3
  • 21. Petrie EJ, Hernández-Pajares M, Spalla P et al (2011) A review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32:197–253
  • 22. Prajapati M, Rawat A, Sharma S (2021) Characterization of amplitude scintillation and distribution of positioning error for IRNSS/GPS/SBAS receiver. Acta Geophys 69:323–333. https://doi.org/10.1007/s11600-020-00507-z
  • 23. Ren X, Chen J, Li X et al (2020) Ionospheric total electron content estimation using GNSS carrier phase observations based on zero-difference integer ambiguity: methodology and assessment. IEEE Trans Geosci Remote Sens 59:817–830
  • 24. Yang H, Yang X, Zhang Z et al (2020) Evaluation of the effect of higher-order ionospheric delay on GPS precise point positioning time transfer. Remote Sens 12:2129
  • 25. Zha JP, Zhang BC, Yuan YB et al (2019) Use of modified carrier-to-code leveling to analyze temperature dependence of multi-GNSS receiver DCB and to retrieve ionospheric TEC. GPS Solut. https://doi.org/10.1007/s10291-019-0895-2
  • 26. Zhang B (2016) Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci 51:972–988
  • 27. Zhang W, Zhang D, Xiao Z (2009) The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann Geophys 27:1613–1623
  • 28. Zhang B, Ou J, Li Z (2011) Determination of ionospheric observables with precise point positioning. Chin J Geophys 54:950–957
  • 29. Zhang S, Wang Z, Huang L (2018) Effect of ionospheric second-order term delay on dynamic precise point positioning of GPS. Acta Geod Cartogr Sin 47:45
  • 30. Zhang X, Ren X, Wu F et al (2019) Short-term Prediction of Ionospheric TEC Based on ARIMA Model. J Geod Geoinf Sci 2:9–16. https://doi.org/10.11947/j.JGGS.2019.0102
  • 31. Zhou F, Dong DN, Li WW et al (2018) GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut 22. https://doi.org/10.1007/s10291-018-0699-9
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6873149e-e9dd-47ee-9c90-c0941dd0dd00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.