PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Th-U-total Pb timing constraints on the emplacement of the granitoid pluton of Stolpen, Germany

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monazite from the Stolpen monzogranite (SE Germany) was studied to constrain the Th-U-total Pb age of pluton formation. Monazite grains demonstrate subtle to distinct patchy zoning related to slight compositional variations. Textural and compositional characteristics indicate that the monazite formed in a single magmatic event in a slightly heterogeneous system, and was only weakly affected by secondary alteration, which did not disturb the Th-U-Pb system. Chemical dating of the monazite gave a consistent age of 299 ± 1.7 Ma. The current study presents the first geochronological data for the Stolpen granite. It provides evidence that Stolpen is the youngest Variscan granitic intrusion in the Lusatian Granodiorite Complex and indicates that magmatic activity related to post-collisional extension in this region lasted at least 5my longer than previously assumed.
Rocznik
Strony
457--472
Opis fizyczny
Bibliogr. 61 poz., il.
Twórcy
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Warsaw Research Centre, Twarda 51/55, 00-818 Warsaw, Poland
  • Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Kraków Research Centre, Senacka 1, 31-002 Kraków, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków, Poland
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Warsaw Research Centre, Twarda 51/55, ` 00-818 Warsaw, Poland
autor
  • Institute of Mineralogy, TU Bergakademie Freiberg, Brennhausgasse 14, D-09596 Freiberg, Germany
autor
  • Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
Bibliografia
  • 1. Bird, P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research, 84, 7561–7571.
  • 2. Cherniak, D.J. and Pyle, J.M. 2008. Th diffusion in monazite. Chemical Geology, 256, 52–61.
  • 3. Cherniak, D.J., Watson, E.B., Grove, M. and Harrison, T.M. 2004a. Pb diffusion in monazite: A combined RBS/SIMS study. Geochimica Cosmochimica Acta, 68, 829–840.
  • 4. Cherniak, D.J., Zhang, X.Y., Nakamura, M. and Watson, E.B. 2004b. Oxygen diffusion in monazite. Earth and Planetary Science Letters, 226, 161–174.
  • 5. Dallmeyer, R.D., Franke, W. and Weber, K.E.B. 1995. Pre-Permian geology of Central and Eastern Europe, pp. 1–604, Springer, Berlin.
  • 6. Diot, H., Masur, S. and Pin, C. 1995. Karkonosze batolith (NE Bohemian Massif): The evidence for pluton emplacement during transtensional-extensional collapse. Journal of Czech Geological Society, 40, 62.
  • 7. Duthou, J.L., Couturié, J. P., Mierzejewski, M. P. and Pin, C. 1991. Rb/Sr age of the Karkonosze granite on the base of the whole rock method. Przeglad Geologiczny, 2, 75–79.
  • 8. Eidam, J. and Götze, J., 1991. The Granitic Massif of Königshain-Arnsdorf (Lusatian Anticlinal Zone). Chemie der Erde, 51, 55–71.
  • 9. Finger, F., Roberts, M.P., Haunschmid, B., Schermaier, A. and Steyrer, H.P. 1997. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology, 61, 67–96.
  • 10. Finger, F. and Steyrer, H. P. 1990. I-Type Granitoids as Indicators of a Late Paleozoic Convergent Ocean-Continent Margin Along the Southern Flank of the Central-European Variscan Orogen. Geology, 18, 1207–1210.
  • 11. Finger, F. and Krenn, E. 2007. Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in stimulating polyphase monazite growth along a PT loop. Lithos, 95, 103-115.
  • 12. Finger, F., Gerdes, A., Rene, M., Riegler, G. 2009. The Saxo-Danubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the southwestern sector of the Bohemian Massif (Variscan orogen). Geologica Carpathica, 60, 205–212.
  • 13. Förster, H.-J. and Romer, R.L. 2010. Carboniferous magmatism. In Linnemann, U. and Romer, R.L. (Eds), Pre-Mesozoic Geology of Saxo-Thuringia – From the Cadomian Active Margin to the Variscan Orogen, pp. 287–308. Schweizerbart; Stuttgart.
  • 14. Forster, H.J., Rhede, D., Stein, H.-J., Romer, R.L. and Tischendorf, G. 2012. Paired uraninite and molybdenite dating of the Konigshain granite: implications for the onset of late-Variscan magmatism in the Lausitz Block. International Journal of Earth Sciences, 101, 57–67.
  • 15. Franke, W. 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke, W., Haak, V., Oncken, O., Tanner, D. (Eds), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society, London, Special Publications, 179, 35–61.
  • 16. Franke, W., Matte, P., Tait, J. 2005. Europe; Variscan Orogeny. In: Encyclopedia of Geology, 2, pp. 75–86. Elsevier; Oxford.
  • 17. Gerdes, A., Wörner, G. and Finger, F. 2000. Hybrids, magma mixing and enriched mantle melts in post- collisional Variscan granitoids: the Rastenberg Pluton, Austria. In: W. Franke, V. Haak, O. Oncken and D. Tanner (Eds), Orogenic Processes: Quantification and Modelling in the Variscan Belt, Geological Society Special Publication, 179, 415–431.
  • 18. Gerdes, A., Friedl, G., Parrish, R.R. and Finger, F. 2003. High-resolution geochronology of Variscan granite emplacement - the South Bohemian Batholith. Journal of Czech Geological Society, 48, 1–2.
  • 19. Hammer, J., Eidam, J., Röber, R. and Ehling, B.C. 1999. Prävariszischer Und variszischer granitoider Magmatismus am NE-Rand des Böhmischen Massivs - Geochemie und Petrogenese. Zeitschrift für Geologischen Wissenschaften, 27, 401–415.
  • 20. Harlov, D., Förster, H.-J. and Nijland, T. G. 2002. Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. American Mineralogist, 87, 245–261.
  • 21. Harlov, D., Wirth, R. and Hetherington, C. L. 2011. Fluid-mediated partial alteration in monazite: the role of coupled dissolution–reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162, 329–348.
  • 22. Janousek,V., Braithwaite, C.J.R., Bowes, D.R. and Gerdes, A. 2004. Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sazava intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 78, 67–99.
  • 23. Jercinovic, M.J. and Williams, M.L. 2005. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. American Mineralogist, 90, 526–546.
  • 24. Jercinovic, M.J., Williams, M.L. and Lane, E.D. 2008. In-situ trace element analysis of monazite and other fine-grained accessory minerals by EPMA. Chemical Geology, 254, 197–215.
  • 25. Just, J., Schulz, B., de Wall, H., Jourdan, F. and Pandit, M.K. 2011. Monazite CHIME/EPMA dating of Erinpura granitoid deformation: Implications for Neoproterozoic tectono-thermal evolution of NW India. Gondwana Research, 19, 402–412.
  • 26. Klein, T., Kiehm, S., Siebel, W., Shang, C.K., Rohrmüller, J., Dörr, W. and Zulauf, G. 2008. Age and emplacement of late-Variscan granites of the western Bohemian Massif with main focus on the Hauzenberg granitoids (European Variscides, Germany). Lithos, 102, 478–507.
  • 27. Kohn, M.J., Wieland, M.S., Parkinson, C.D. and Upreti, B.N. 2005. Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. Journal of Metamorphic Geology, 23, 399–406.
  • 28. Konečný, P. 2004. Methodics of monazite dating using electron microprobe. Mineralogia Slovakia, 36, 225–235.
  • 29. Kozdrój, W., Krentz, O. and Opletal, M. (Eds) 2001. Geological map and Comments on the Geological Map Lausitz, Jizera, Karkonosze (without Cenozoic sediments) 1 : 100 000 Państwowy Instytut Geologiczny, Warsaw.
  • 30. Kröner, A., Hegner, E., Hammer, J., Haase, G., Bielicki, K.-H., Krauss, M. and Eidam, J. 1994. Geochronology and Nd-Sr systematics of Lusatian granites: significance for the evolution of the Variscan orogen in east-central Europe. Geologische Rundschau, 83, 357–376.
  • 31. Kryza, R., Crowley, Q.D., Larionov, A., Pin, C., Oberc-Dziedzic, T. and Mochnacka, K. 2012. Chemical abrasion applied to SHRIMP zircon geochronology: An example from the Variscan Karkonosze Granite (Sudeted, SW Poland). Gondwana Research, 21, 757–767.
  • 32. Lisowiec, K., Budzyń, B., Słaby, E., Renno, A.D. and Götze, J. 2012. Fluid-induced magmatic and post-magmatic zircon and monazite patterns in granitoid pluton and related rhyolitic bodies. Chemie der Erde, 73, 163–179.
  • 33. Liu, Y., Siebel, W., Massonne, H.J. and Xiao, X.C. 2007. Geochronological and petrological constraints for tectonic evolution of the central Greater Himalayan Sequence in the Kharta area, southern Tibet. Journal of Geology , 115, 215–230.
  • 34. Marheine, D., Kachlik,V., Maluski, H., Patocka, F. and Zelazniewicz, A. 2002. The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif): constraints on the Variscan polyphase tectonothermal development. In: Winchester, J.A., Pharaoh, T. and Verniers, J. (Eds), Palaezoic Amalgamation of Central Europe. Geological Society, London, Special Publications, 201, 133–155.
  • 35. Martin, R.F. 2006. A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos, 91, 125–136.
  • 36. Matte, P. 1986. Tectonics and Plate-Tectonics Model for the Variscan Belt of Europe. Tectonophysics, 126, 329–374.
  • 37. Matte, P., Maluski, H., Rajlich, P. and Franke, W. 1990. Terrane Boundaries in the Bohemian Massif - Result of Large-Scale Variscan Shearing. Tectonophysics, 177, 151–170.
  • 38. Mazur, S. and Aleksandrowski, P. 2001. The Tepla(?)/Saxothuringian suture in the Karkonosze-Izera Massif, western Sudetes, Central European Variscides. International Journal of Earth Sciences, 9, 341–360.
  • 39. Mazur, S., Aleksandrowski, P., Turniak, K. and Awdankiewicz, M, 2007. Geology, tectonic evolution and Late Paeleozoic magmatism of Sudetes – an overview. Granitoids in Poland, AM Monograph, 1, 59–87.
  • 40. Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. and Provost, A. 1996. Electron microprobe dating of monazite. Chemical Geology, 131, 37–53.
  • 41. Oberc-Dziedzic, T., Kryza, R., Pin, C. and Madej, S. 2013. Variscan granitoid plutonism in the Strzelin Massif (SW Poland): petrology and age of the composite Strzelin granite intrusion. Geology Quarterly, 57, 269–288.
  • 42. Parrish, R.R. 1990. U-Pb Dating of Monazite and Its Application to Geological Problems. Canadian Journal of Earth Sciences, 27, 1431–1450.
  • 43. Poitrasson, F., Chenery, S. and Shepherd, T. J. 2000. Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics. Geochimica Cosmochimica Acta, 64, 3283–3297.
  • 44. Pyle, J.M., Spear, F.S., Wark, D.A., Daniel, C.G. and Storm, L.C. 2005. Contributions to precision and accuracy of monazite microprobe ages. American Mineralogist, 90, 547–577.
  • 45. Romer, R. L., Förster, H.-J. and Stemprok, M. 2010. Age constraints for the late-Variscan magmatism in the Altenberg-Teplice Caldera (Eastern Erzgebirge/Krusne hory). Neues Jahrbuch für Mineralogie – Abhandlungen, 187, 289–305.
  • 46. Rosa-Costa, L.T., Lafon, J.M., Cocherie, A. and Delor, C. 2008. Electron microprobe U–Th–Pb monazite dating of the Transamazonian high-grade metamorphic overprint on Archean rocks from Amapá Block, southeastern Guiana Shield, northern Brazil. Journal of South American Earth Sciences, 26, 445–462.
  • 47. Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parvesal, P., Paquette, J.-L., Janots, E. and Wirth, R. 2012. Low-temperature alteration of monazite: Fluid mediated coupled dissolution–precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. Chemical Geology, 330-331, 140–158.
  • 48. Siebel, W., Chen, F. and Satir, M. 2003. Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. International Journal of Earth Sciences, 92, 36–53.
  • 49. Siebel, W., Shang, C. K. and Presser, V. 2010. Permo-Carboniferous magmatism in the Fichtelgebirge: dating the final intrusive pulse by U-Pb, 207Pb/206Pb and 40Ar/39Ar geochronology. Zeitschrift für Geologischen Wissenschaften, 38, 85−98.
  • 50. Słaby, E. and Martin, H. 2008. Mafic and felsic magma interaction in granites: The Hercynian Karkonosze Pluton (Sudetes, Bohemian Massif). Journal of Petrology, 49, 353–391.
  • 51. Słaby, E., Breitkreuz, C., Żaba, J., Domańska-Siuda, J., Gaidzik, K., Falenty, K. and Falenty A. 2010. Magma generation in an alternating transtensional–transpressional regime, the Kraków–Lubliniec Fault Zone, Poland. Lithos, 119, 251–268.
  • 52. Spear, F.S., Pyle, J.M. and Cherniak, D. 2009. Limitations of chemical dating of monazite. Chemical Geology, 266, 218–230.
  • 53. Suzuki, K. and Adachi, M. 1991. Precambrian Provenance and Silurian Metamorphism of the Tsubonosawa Paragneiss in the South Kitakami Terrane, Northeast Japan, Revealed by the Chemical Th-U-Total Pb Isochron Ages of Monazite, Zircon and Xenotime. Geochemical Journal, 25, 357–376.
  • 54. Suzuki, K. and Adachi, M. 1994. Middle Precambrian Detrital Monazite and Zircon from the Hida Gneiss on Oki-Dogo Island, Japan – Their Origin and Implications for the Correlation of Basement Gneiss of Southwest Japan and Korea. Tectonophysics, 235, 277–292.
  • 55. Suzuki, K. and Kato, T. 2008. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pitfalls and chemical criterion of possibly discordant age data. Gondwana Research, 14, 569–586.
  • 56. Tickyj, H., Hartmann, L.A., Vasconcellos, M.A.Z., Philipp, R.P. and Remus, M.V.D. 2004. Electron microprobe dating of monazite substantiates ages of major geological events in the southern Brazilian shield. Journal of South American Earth Sciences, 16, 699–713.
  • 57. Turniak, K., Mazur, S., Domańska-Siuda, J. and Szuszkiewicz, A. 2014. SHRIMP U-Pb zircon dating for granitoids from the Strzegom - Sobótka Massif, SW Poland: Constraints on the initial time of Permo-Mesozoic lithosphere thinning beneath Central Europe. Lithos, in print.
  • 58. Williams, M.L., Jercinovic, M.J., Goncalves, P. and Mahan, K.H. 2006. Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology, 225, 1–15.
  • 59. Williams, M.L., Jercinovic, M.J. and Hetherington, C.J. 2007. Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Reviews of Earth and Planetary Sciences, 35, 137–175.
  • 60. Williams, M.L., Jercinovic, M.J., Harlov, D., Budzyn, B. and Hetherington, C.J. 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283, 218–225.
  • 61. Ziegler, P.A. 1986. Geodynamic Model for the Paleozoic Crustal Consolidation of Western and Central-Europe. Tectonophysics, 126, 303–328.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68722940-b6ea-41b1-a475-866c3976cfa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.