PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of 432 Hz and 440 Hz Sound Frequencies on the Heart Rate, Egg Number and Survival Parameters in Water Flea (Daphnia magna)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The noise pollution caused by anthropogenic activities in the aquatic environment negatively affects aquatic organisms like mammals, fish, crustaceans, and even plankton, which are important for the aquatic ecosystem. This study was conducted to examine the effect of lethal and sub-lethal effects of high-frequency sound exposure on Daphnia magna aiming to obtain more detailed scientific information. For this purpose, a total of 150 gynandromorphic daphnids were randomly selected, sorted equally into 440 Hz, 432 Hz, and control groups, and high-frequency sounds were applied in aquatic conditions. During the 35-day trial period, the heartbeats, and egg numbers were counted whereas the survival rates were recorded. The results showed that the high-frequency sound exposure immediately showed its detrimental effect on heartbeats after a short adaptation period in the 440 Hz group and the average values decreased to half of the normal values. In the 432 Hz group, heartbeats first increased, and this level was maintained for a while, but then a significant decrease was observed. Regarding the egg numbers, an increasing trend was observed in the 432 Hz group until the 5th measurement period which resulted in a sharp decrease. In the 440 Hz group, lower values with almost no increase were recorded, except for the first measurement period, but no eggs were found in the 55th measurement. Interestingly, while no death was noted during the measurement periods, no living daphnia was observed in the 440 Hz group within 2 weeks during the non-measurement period. As a result, it was understood that Daphnia perceives the vibrations produced by high-frequency sound in the aquatic environment as a stressor and cannot cope with its detrimental effects after a certain time depending on intensity and duration. While the 440 Hz frequency noise caused infertility, the 432 Hz frequency noise resulted in lower egg numbers and heartbeats.
Słowa kluczowe
Rocznik
Strony
119--125
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Aquaculture, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, Değirmenaltı Campus No:1, 59030, Süleymanpaşa, Turkey
  • Department of Biostatistics, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, Değirmenaltı Campus No:1, 59030, Süleymanpaşa, Turkey
Bibliografia
  • 1. Anonymous-a, 2021. Possible environment alterations: Noise pollution, total dissolved solids (accessed 08 February 2021) http://www.aquaticlifelab.eu/4-2-noise-pollution
  • 2. Anonymous-b, 2021. https://en.wikipedia.org/wiki/Total_dissolved_solids
  • 3. Bittencourt L., Carvalho R.R., Lailson-Brito J., Azevedo A.F. 2014. Underwater noise pollution in a coastal tropical environment. Marine Pollution Bulletin 83, 331-336.
  • 4. Butler J.M., Maruska K.P. 2020. Underwater noise impairs social communication during aggressive and reproductive encounters. Animal Behaviour, 164, 9-23.
  • 5. Corotto F., Ceballos D., Lee A., Vinson L. 2010. Making the Most of the Daphnia Heart Rate Lab: Optimizing the Use of Ethanol. Nicotine & Caffeine Am. Biol. Teach. 72, 176-179.
  • 6. Coquereau L., Grall J., Clavier J., Jolivet A., Chauvaud L. 2016. Acoustic behaviours of large crustaceans in NE Atlantic coastal habitats. Aquat Biol. 25, 151-163
  • 7. De Vincenzi G., Micarelli P., Viola S., Buffa G., Sciacca V., Maccarrone V., Corrias V., Reinero F.R., Giacoma C., Filiciotto F. 2021. Biological Sound vs. Anthropogenic Noise: Assessment of Behavioural Changes in Scyliorhinus canicular Exposed to Boats Noise. Animals, 11, 174.
  • 8. Di Francoa E., Piersona P., Di Ioriob L., Calòa A., Cottalordaa J.M., Derijarda B., Di Francoa A., Galvéf A., Guibbolinia M., Lebrung J., Michelih F., Priouzeaua F., Risso-de Faverneya C., Rossia, F., Sabouraulta C., Spennatoa G., Verrandoi P., Guidetti, P. 2020. Effects of marine noise pollution on Mediterranean fishes and invertebrates: A review. Marine Pollution Bulletin, 159, 111450.
  • 9. Di Nasso L., MBiostat A.N., Pace R., Pierleoni F., Pagavino G., Giuliani V. 2016. Influences of 432 Hz Music on the Perception of Anxiety during Endodontic Treatment: A Randomized Controlled Clinical Trial. Journal of Endodontics, 42 (9), 1338-1343.
  • 10. Ebert D. 2011. A genome for the environment. Science, 331, 539-540.
  • 11. Elizalde-Velazquez A., M. Carcano, A.M., Crago J., Green M.J., Shah S.A., Canas-Carrell J.E. 2020. Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas. Environmental Pollution 259, 113937.
  • 12. Exbrayat J.M., Brun C. 2019. Some Effects of Sound and Music on Organisms and Cells: A Review. Annual Research & Review in Biology, 32(2), 1-12.
  • 13. Halbert J.D., van Tuyll D.R., Purdy C., Hao G., Cauthron S., Crookall C., Baban B., Topolski R., Al-Hendy A., Kapuku G.K. 2018. Low Frequency Music Slows Heart Rate and Decreases Sympathetic Activity. Music & Medicine, 10 (4), 180-185.
  • 14. Jones N. 2019. Ocean uproar: saving marine life from a barrage of noise. Nature 568, 158-161.
  • 15. Kaas B., Krishnarao K., Marion E., Stuckey L., Kohn R. 2009. Effects of melatonin and ethanol on the heart rate of Daphnia magna. J. Undergrad. Neurosci. Educ. 1-8.
  • 16. Kvist J., Athanàsio C.G., Solari O.S., Brown J.B., Colbourne J.K., Pfrender M.E., Mirbahai L. 2018. Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol. Evol. 10, 1988-2007.
  • 17. Martins J., Soares M.L., Saker M.L., Teles L.O., Vasconcelos V.M. 2007. Phototactic behavior in Daphnia magna Straus as an indicator of toxicants in the aquatic environment. Ecotoxicol. Environ. Saf. 67, 417-422.
  • 18. Mitchell S.E., Lampert W. 2000. Temperature adaptation in a geographically widespreadzooplankter, Daphnia magna. J. Evol. Biol. 13 371-382.
  • 19. Popper A.N., Hawkins A.D. 2019. An overview of fish bioacoustics and the impacts of anthropogenic sounds on fishes. J Fish Biol. 94, 692-713.
  • 20. Teschner M. 1995. Effects of salinity on the life history and fitness of Daphnia magna: variability within and between populations. Hydrobiologia, 307, 33-41.
  • 21. Thabet R., Ayadi H., Koken M., Leignel V. 2017. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia, 799, 1-20.
  • 22. Vakili S.V., Olçer A.I., Ballini F. 2020. The development of a policy framework to mitigate underwater noise pollution from commercial vessels: The role of ports. Marine Policy 120, 104132.
  • 23. Vazzana M., Mauro M., Ceraulo, M., Dioguardi M., Papale E., Mazzola S., Arizza V., Beltrame F., Inguglia L., Buscaino G. 2020. Underwater high frequency noise: Biological responses in sea urchin Arbacia lixula (Linnaeus, 1758). Comparative Biochemistry and Physiology, Part A, 242.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6870ebb0-cb39-430e-90f5-5be93866f579
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.