Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents the development and validation of a hybrid cutting force prediction model for ball end milling of aluminum 7075-T6 alloy. The model combines a mechanistic approach with a specific cutting force coefficient (Ks=850 N/mm²) sourced from experimental literature. Cutting forces in the x, y, and z directions are predicted by integrating differential force components with tool geometry and machining parameters. Experimental validation was performed under dry conditions at a spindle speed of 15,000 rpm. In the x-direction, the simulated force was 162.4 N versus an experimental force of 215.4 N; in the y and z-directions, predicted values (65.2 N and 25.3 N) closely matched experimental forces (74.3 N and 28.2 N), respectively. The corresponding mean absolute errors were 18.2% (x), 4.5% (y), and 3.3% (z). The higher error in the x direction highlights limitations in modeling tangential force dynamics, while the y and z predictions align closely with experimental data. Leveraging the experimentally derived Ks, the proposed model offers a practical tool for optimizing machining processes in the aerospace sector, with potential for further refinement in tangential force modeling.
Wydawca
Rocznik
Tom
Strony
68--76
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Product Research Laboratory, Faculty of Technology, Mechanical Engineering Department, University Batna 2 - Mostefa Benboulaid, 53 Route de Constantine, Fésdis, Batna 05078, Algeria
autor
- Product Research Laboratory, Faculty of Technology, Mechanical Engineering Department, University Batna 2 - Mostefa Benboulaid, 53 Route de Constantine, Fésdis, Batna 05078, Algeria
autor
- University Institute of Technology, University of Haute-Alsace, Mulhouse, France
autor
- École Supérieure des Technologies et des Affaires (ESTA), Université Marie et Louis Pasteur, ELLIADD Laboratory (U.R. No. 4661), Belfort, France
autor
- Higher National School of Renewable Energies, Environment & Sustainable Development, Constantine road, Fesdis, Batna, 05078, Algeria
Bibliografia
- 1. Wei Z.C., Guo M.L., Wang M.J., Li S.Q., Wang J. Prediction of cutting force for ball end mill in sculptured surface based on analytic model of CWE and ICCE. Mach. Sci. Technol. 2019; 23(5): 688–711. https://doi.org/10.1080/10910344.2019.1575408.
- 2. Zhuang K., Yang Y., Dai X., Weng J., Tian C., Gao Z. Multi-axis ball-end milling force prediction model considering the influence of cutting edge. Int. J. Adv. Manuf. Technol. 2023; 128: 357–371. https://doi.org/10.1007/s00170-023-11890-4.
- 3. Mou W., Zhu S., Zhu M., Han L., Jiang L. A prediction model of cutting force about ball end milling for sculptured surface. Math. Probl. Eng. 2020; 2020: 1389718. https://doi.org/10.1155/2020/1389718.
- 4. Wang H., Tao K., Jin T. Modeling and estimation of cutting forces in ball helical milling process. Int. J. Adv. Manuf. Technol. 2021; 117(9): 2807–2818. https://doi.org/10.1007/s00170-021-07817-6.
- 5. Nguyen V.H., Le T.T. Predicting surface roughness in machining aluminum alloys taking into account material properties. Int. J. Comput. Integr. Manuf. 2024. https://doi.org/10.1080/0951192X.2024.2372252.
- 6. Yue Q., He Y., Li Y., Tian S. Modeling and optimization of surface residual stress profiles in milling of aluminum 7075-T6 alloy. Int. J. Adv. Manuf. Technol. 2024; 130(11): 5913–5934. https://doi.org/10.1007/s00170-024-13057-1.
- 7. Xu Y., Yue C., Chen Z., Li M., Wang L., Liu X. Finite element simulation of residual stress in milling of aluminum alloy with different passes. International Journal of Advanced Manufacturing Technology, 127(9–10), 4199–4210, 2023. https://doi.org/10.1007/s00170-023-11795-2.
- 8. Duan Z., Li C., Ding W., Zhang Y., Yang M., Gao T., Cao H., Xu X., Wang D., Mao C., Li H.N., Kumar G.M., Said Z., Debnath S., Jamil M., Hafiz M.A. Milling force model for aviation aluminum alloy: Academic insight and perspective analysis. Chinese Journal of Mechanical Engineering, 34, Article number: 18, 2021. https://doi.org/10.1186/s10033-021-00536-9.
- 9. Bahram M. Unified mechanistic identification of cutting force coefficients. Master’s thesis, The University of British Columbia (Vancouver), Canada, May 2023. https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0432479.
- 10. Dikshit M.K. Determination of force coefficient based on instantaneous forces and linear mechanistic model in ball end milling. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022; 237(11): 2070–2082. https://doi.org/10.1177/09544054221136515.
- 11. Wang Z., Cao Y., Yao H., Kou F. Dynamic simulation and experimental study of cutting force by rake angle of multi-axis high-speed ball-end milling tool. Int. J. Adv. Manuf. Technol. 2022; 122: 377–390.
- 12. Wang R., Zhang S., Ge R., Luan X., Wang J., Lu S. Modified cutting force prediction model considering the true trajectory of cutting edge and in-process workpiece geometry in ball-end milling operation. Int. J. Adv. Manuf. Technol. 2021; 115(4): 1187–1199. https://doi.org/10.1007/s00170-021-07285-y.
- 13. Qin S., Hao Y., Zhu L., Wiercigroch M., Yuan Z., Shi C., Cui D. CWE identification and cutting forces prediction in ball-end milling process. Int. J. Mech. Sci. 2023; 239: 107863. https://doi.org/10.1016/j.ijmecsci.2022.107863.
- 14. Li F., Liu J., Hu B., Jin H. An optimized method for calibration milling force coefficients and cutter run-out parameters in end milling process. Int. J. Adv. Manuf. Technol. 2024; 135(5–6): 2597–2606. https://doi.org/10.1007/s00170-024-14620-6.
- 15. Nan C., Liu D. Analytical calculation of cutting forces in ball-end milling with inclination angle. J. Manuf. Mater. Process. 2018; 2(2): 35. https://doi.org/10.3390/jmmp2020035.
- 16. Calleja A., Alonso M.A., Fernández A., Tabernero I., Ayesta I., Lamikiz A., López de Lacalle L.N. Flank milling model for tool path programming of turbine blisks and compressors. Int. J. Prod. Res. 2015; 53(11): 3346–3362. https://doi.org/10.1080/00207543.2014.983619.
- 17. Miao H., Wang C., Li C., Yao G., Zhang X., Liu Z., Xu M. Dynamic modeling and nonlinear vibration analysis of spindle system during ball end milling process. Int. J. Adv. Manuf. Technol. 2022; 121(11): 7867–7889. https://doi.org/10.1007/s00170-022-09759-1.
- 18. Cai S., Cai Z., Yao B., Shen Z., Ma X. Identifying the transient milling force coefficient of a slender end-milling cutter with vibrations. J. Manuf. Process. 2021; 67: 262–274. https://doi.org/10.1016/j.jmapro.2021.05.025.
- 19. Schmitz T.L., Smith K.S. Machining Dynamics: Frequency Response to Improved Productivity. Springer, 2019. https://link.springer.com/book/10.1007/978-3-319-93707-6.
- 20. Rebai S. L’influence de la direction d’usinage sur le comportement dynamique du processus de fraisage. Master’s thesis, Université Mohamed Khider - Biskra, Algeria, 2015. http://archives.univ-biskra.dz/handle/123456789/24829.
- 21. Sethupathy A., Shanmugasundaram N. Prediction of cutting force based on machining parameters on AL7075-T6 aluminum alloy by response surface methodology in end milling. Mater. Werkst. Tech. 2021; 52(8): 879–890. https://doi.org/10.1002/mawe.202000086.
- 22. Zhou M., Chen Y., Zhang G. Force prediction and Finite element simulation of residual stress in milling of aluminum alloy with different passes. International Journal of Advanced Manufacturing Technology, 127(9–10), 4199–4210, 2023. https://doi.org/10.1007/s00170-023-11795-2.
Uwagi
Poz. 22 w bibliografii z niepełnym zapisem.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-686f8924-f10d-486d-a9f5-6b6414ec47fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.