PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sulphate and arsenate minerals as environmental indicators in the weathering zones of selected ore deposits, Western Sudetes, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of a complex investigation of the sulphate and arsenate assemblages forming in the weathering zone of selected ore deposits in the Sudetes are presented. The development of the weathering zone has been characterised in the polymetallic ore deposits at Miedzianka–Ciechanowice and Radzimowice, and the pyrite deposit at Wieściszowice, which differ in the chemical compositions of the ore and barren minerals and the hydrological conditions. Secondary sulphate and arsenate mineral assemblages vary significantly among the ore deposits under study. Their crystallization is discussed, taking into consideration the stability of particular minerals and the paths of their transformation. It is shown that these minerals have great potential as indicators of weathering processes. A significant role for microorganisms in the formation of the weathering zone of the ore deposits under study is also proven.
Słowa kluczowe
Rocznik
Strony
493--508
Opis fizyczny
Bibliogr. 59 poz., fot., rys., tab.
Twórcy
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology , University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
autor
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology , University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
autor
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology , University of Warsaw, Al. Żwirki i Wigury, 93, PL-02-089 Warszawa, Poland
Bibliografia
  • 1. Aloune, S.H. Hiroyoshi, N. and Ito, M. 2015. Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions. Minerals Engineering, 74, 51–59.
  • 2. Alwan, A.K. and Williams P.A. 1979. Mineral formation from aqueous solution, Part II. The stability of langite, Cu2SO4(OH)6·H2O. Transition Metal Chemistry, 4, 319–322.
  • 3. Baron, D. and Palmer C.D. 1996. Solubility of jarosite at 4–35ºC. Geochimica et Cosmochimica Acta, 60, 185–195.
  • 4. Bigham, J.M., Schwertmann, U., Traina, S.J., Winland, R.L. and Wolf, M. 1996. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimca Acta, 60, 2111–2121.
  • 5. Bluteau, M-C. and Demopoulos, G.P. 2007. The incongruent dissolution of scorodite – Solubility kinetics and mechanism. Hydrometallurgy, 87, 163–177.
  • 6. Borkowski, A., Parafiniuk, J., Wolicka D. and Kowalczyk P. 2013. Geomicrobiology of Acid Mine Drainage in the weathering zone of pyrite-bearing schists in the Rudawy Janowickie Mountains (Poland). Geological Quarterly, 57, 601–612.
  • 7. Chukhlantsev, V.G. 1956. The solubility products of a number of arsenates. Journal of Analytical Chemistry of the USSR, 11, 565–571.
  • 8. Dove, P.M. and Rimstidt, J.D. 1985. The solubility and stability of scorodite, FeAsO42H2O. American Mineralogist, 70, 838–844.
  • 9. Dunn, P.J. 1982. New data for pitticite and a second occurrence of yukonite at Sterling Hill, New Jersey. Mineralogical Magazine, 46, 261–264.
  • 10. Dziekoński, T. 1972. Wydobywanie i metalurgia kruszców na Dolnym Śląsku od XIII do połowy XX wieku. Ossolineum; Wrocław.
  • 11. Filippi, M. Goliáš, V. and Pertold, Z. 2004. Arsenic in contaminated soils and anthropogenic deposits at the Mokrsko, Roudný, and Kašperské Hory gold deposits, Bohemian massif Czech Environmental Geology, 45, 716–730.
  • 12. Frost, R.L., Xi, Y., Palmer, S.J. and Tan, K. 2011. Molecular structural studies of the amorphous mineral pitticite Fe, AsO4, SO4, H2O. Journal of Molecular Structure, 1005, 78–82.
  • 13. Gas’kova, O.L., Shironosova, G.P. and Bortnikova, S.B. 2008. Thermodynamic Estimation of the Stability Field of Bukovskýite, an Iron Sulfoarsenate. Geochemistry International, 46, 85–91.
  • 14. Gieré, R., Sidenko, N.V. and Lazareva, E.V. 2003. The role of secondary minerals in controlling the migration of arsenic and metals from high-sulfide wastes (Berikul gold mine, Siberia). Applied Geochemistry, 18, 1347–1359.
  • 15. Holeczek, J. and Janeczek, J. 1991. Pseudomalachite from Radzimowice and some comments on its occurrence in Miedzianka (Sudetes Mts.). Mineralogia Polonica, 22, 17–26.
  • 16. Jaskólski, S. 1964. On the origin of pyrite schists at Wieściszowice (Lower Silesia). Annales Societatis Geologorum Poloniae, 34, 29–64. [In Polish]
  • 17. Kim, J.J. and Kim, S.J. 2004. Seasonal factors controlling mineral precipitation in the acid mine drainage at Donghea coal mine, Korea. Science of the Total Environment, 325, 181–191.
  • 18. Knorr, K.-H. and Blodau, C. 2007. Controls on schwertmannite transformation rates and products. Applied Geochemistry, 22, 2006–2015.
  • 19. Krause, E. and Ettel, V.A. 1989. Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy, 22, 311–337.
  • 20. Kubisz, J. 1964. Studies on supergene sulphate minerals occurring in Poland. Prace Geologiczne Komisji Nauk Geologicznych PAN, 26, 1–76. [In Polish]
  • 21. Langmuir, D., Mahoney, J. and Rowson, J. 2006. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO42H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70, 2942–2956.
  • 22. Magalhaes, M.C.F., Pedrosa de Jesus, J.D. and Williams, P.A. 1988. The chemistry of formation of some secondary arsenate minerals of Cu(II), Zn(II) and Pb(II). Mineralogical Magazine, 52, 679–690.
  • 23. Mains, D. and Crow, D. 2005. Composition and mineralogy of historic gold processing residues, east Otago, New Zeland. New Zeland Journal of Geology and Geophysics, 48, 641–647.
  • 24. Majzlan, J., Łazić, B., Armbruster, T., Johnson, M.B., White, M.A., Fisher, R.A., Plášil, J., Loun, J., Škoda, R. and Novák, M. 2012. Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe2(AsO4)(SO4)(OH)·9H2O. Journal of Mineralogical and Petrological Sciences, 107, 133–148.
  • 25. Majzlan, J., Amoako, F.Y., Kindlova, H. and Drahota, P. 2015. Thermodynamic properties of zykaite, a ferric sulfoarsenate. Applied Geochemistry, 61, 294–301.
  • 26. Maley, M., van Bronswijk, W. and Watling, H.R. 2009. Leaching of a low-grade, copper-nickel sulfide ore. 3. Interactions of Cu with selected sulfide minerals. Hydrometallurgy, 98, 73–80.
  • 27. Marani, D., Patterson, J.W. and Anderson, P.R. 1995. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Research, 29, 1317–1326.
  • 28. Marini, L., Saldi, G., Cipolli, F., Ottonello, G. and Zuccolini, M.V. 2003. Geochemistry of water discharges from the Libiola mine, Italy. Geochemical Journal, 37, 199–216.
  • 29. Makuch, M. and Stolarczyk, T. 2013. Miedzianka 700 lat dziejów górniczego miasta, pp. 1–149. Legnica.
  • 30. Manecki, M. 1965. Mineralogical and petrographical study of ore veins of the vicinity of Wojcieszów (Lower Silesia). Prace Mineralogiczne, 2, 1–90. [In Polish]
  • 31. Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic, T. 2006. The Variscan Orogen in Poland. Geological Quarterly, 50, 89–118.
  • 32. Mikulski, S.Z. 2005. Geological, mineralogical and geochemical characteristics of the Radzimowice Au-As-Cu deposit from the Kaczawa Mountains (Western Sudetes, Poland): an example of the transition of porphyry and epithermal style. Mineralium Deposita, 39, 904–920.
  • 33. Mikulski, S.Z. 2007. The late Variscan gold mineralization in the Kaczawa Mountains, Western Sudetes. Polish Geological Institute Special Papers, 22, 1–162.
  • 34. Mochnacka, K. 1982. Polymetallic mineralization of the eastern metamorphic cover of the Karkonosze Granite and its connection with the geologic evolution of the area. Biuletyn Instytutu Geologicznego, 341, 273–289. [In Polish]
  • 35. Moncur, M.C., Janbor, J.L., Ptacek, C.J. and Blowes, D.W. 2009. Mine drainage from the weathering of sulfide minerals and magnetite. Applied Geochemistry, 24, 2362–2373.
  • 36. Murad, E. and Rojík, P. 2003. Iron-rich precipitates in a mine drainage environment: Influence of pH on mineralogy. American Mineralogist, 88, 1915–1918.
  • 37. Nordstrom, D.K and Alpers, C.N. 1999. Geochemistry of acid mine waters. In: Plumlee G., Logsdon M. (Eds), The Environmental Geochemistry of Mineral Deposits. Part A. Processes, methods and health issues. Reviews in Economic Geology, 6, 133–160.
  • 38. Norlund, K.L.I., Baron, C. and Warren, L.A. 2010. Jarosite formation by an AMD sulphideoxidizing environmental enrichment: implications for biomarkers on Mars. Chemical Geology, 275, 235–242.
  • 39. Paktunc, D. and Bruggeman, K. 2010. Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes. Applied Geochemistry, 25, 674–683.
  • 40. Parafiniuk, J. 1991. Fibroferrite, slavikite and pickeringite from the oxidation zone of pyritebearing schists in Wieściszowice (Lower Silesia). Mineralogia Polonica, 22, 3–15.
  • 41. Parafiniuk, J. 1996. Sulfate minerals and their origin in the weathering zone of the pyrite-bearing schists at Wieściszowice (Rudawy Janowickie Mts, Western Sudetes). Acta Geologica Polonica, 46, 353–414.
  • 42. Parafiniuk, J. and Siuda R. 2006. Schwertmannite precipitated from acid mine drainage in the Western Sudetes (SW Poland) and its arsenate sorption capacity. Geological Quarterly, 50, 475–486.
  • 43. Parafiniuk, J., Dobrzycki, Ł. and Woźniak, K. 2010. Slavikite - Revision of chemical composition and crystal structure. American Mineralogist, 95, 11–18.
  • 44. Piestrzyński, A. and Salamon, W. 1977. New data on polymetallic mineralization of quartz veins in pyrite deposit from Wieściszowice (Lower Silesia). Kwartalnik Geologiczny, 21, 27-35.
  • 45. Pollard, A.M., Thomas, R.G. and Williams, P.A. 1992. The stabilities of antlerite and Cu3SO4(OH)4•2H2O: their formation and relationship to other copper(II) sulphate minerals. Mineralogical Magazine, 56, 359–365.
  • 46. Regensburg, S., Brand, A. and Peiffer, S. 2004. Formation and stability of schwertmannite in acid mining lakes. Geochimica et Cosmochimica Acta, 68, 1185–1197.
  • 47. Rimstidt, J.D., Chermak, J.A. and Gagen, P.M. 1994. Rates of reaction of galena, sphalerite, chalcopyrite and arsenopyrite with Fe(III) in acidic solutions. ACS Symposium Series: Environmental Geochemistry of Sulfide Oxidation, 1, 2–13.
  • 48. Robins, R.G. 1987. Solubility and stability of scorodite, FeAsO42H2O: Discussion. American Mineralogist, 72, 842–844.
  • 49. Sand, W. and Gehrke, T. 2006. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Research in Microbiology, 157, 49–56.
  • 50. Sand, W., Gehrke, T., Hallmann, R. and Schippers, A. 1995. Sulfur chemistry, biofilm and the (in)direct attack mechanism - a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43, 961–966.
  • 51. Siuda, R. 2012. Silver minerals from Friederike Juliane Mine at Ciechanowice (Sudety Mts, Poland). Biuletyn Państwowego Instytutu Geologicznego, 448, 315–324.
  • 52. Siuda, R. and Gołębiowska, B. 2011. Nowe dane o minerałach wietrzeniowych złoża Miedzianka-Ciechanowice w Rudawach Janowickich (Dolny Śląsk, Polska). Przegląd Geologiczny, 59, 226–234.
  • 53. Siuda, R. and Kruszewski, Ł. 2006. New data on bayldonite, cornwallite, olivenite and philipsburgite from Miedzianka (Rudawy Janowickie Mts., Sudetes, Poland). Mineralogia Polonica Special Papers, 28, 202–204.
  • 54. Siuda, R. and Kruszewski, Ł. 2013. Recently formed secondary copper minerals as indicators of geochemical conditions in an abandoned mine in Radzimowice (SW Poland). Geological Quarterly, 57, 583–600.
  • 55. Siuda, R. and Borzęcki, R. 2014. Relikty górnictwa i hutnictwa rejonu złoża Miedzianka-Ciechanowice jako obiekty geoturystyczne. Przegląd Geologiczny, 62, 397–402.
  • 56. Tumiati, S., Godard, G., Masciocchi, N., Martin, S. and Monticelli, D. 2008. Environmental factors controlling the precipitation of Cu-bearing hydrotalcite-like com pounds from mine waters. The case of the “Eve verda” spring (Aosta Valley, Italy). European Journal of Mineralogy, 20, 73–94.
  • 57. Yu, J.Y., Park, M. and Kim, J. 2002. Solubilities of synthetic schwertmannite and ferrihydrite. Geochemical Journal, 36, 119–132.
  • 58. Zimnoch, E. 1965. New data about ore mineralization in Stara Góra deposit. Biuletyn Geologiczny Wydziału Geologii UW, 5, 3–38. [In Polish]
  • 59. Zimnoch, E. 1978. Ore minerallization of the Miedzianka deposit in the Sudetes. Biuletyn Instytutu Geologicznego, 308, 91–134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68699185-5015-48a6-b3b8-edb339d831e0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.