Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mat foundations are most typically used in locations featuring weak soils such as soft clays and silts, particularly when building in demanding geotechnical conditions. Because of their poor engineering characteristics and significant difficulties associated with workability, these soils are often removed or avoided by excavating down to a specific depth. However, if thick layers are present, their removal becomes unpractical, costly, and creates inconvenience during construction. To overcome this issue, various reinforcement strategies can be adopted. In this study, the use of stone columns under mat foundations was investigated via numerical modeling. Two scenarios were compared: one in which stone columns were installed without any soil removal and another in which a layer of soft ground was removed and the foundation was installed without any ground treatment. Numerical results showed the clear beneficial effect of stone columns, which can significantly reduce settlements even in the presence of a thick deformable soil layer.
Wydawca
Czasopismo
Rocznik
Tom
Strony
333--342
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Ethiopia
- Faculty of Civil Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Wybrzeze Wyspianskiego 27, Poland
autor
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Ethiopia
autor
- Institute of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of Science, Charles University, Czech Republic
autor
- Faculty of Civil Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Wybrzeze Wyspianskiego 27, Poland
Bibliografia
- [1] Srilakshmi G, Rekha B., “Analysis of Mat foundation using Finite Element Method,” Int. J. Earth Sci. Eng., vol. 4, no. 6, pp. 113–115, Oct. 2011.
- [2] S. S. Najjar, “A State-of-the-Art Review of Stone/Sand-Column Reinforced Clay Systems,” Geotech. Geol. Eng., vol. 31, no. 2, pp. 355–386, Apr. 2013, doi: 10.1007/s10706-012-9603-5.
- [3] S. A. Tan, K. S. Ng, and J. Sun, “Column Group Analyses for Stone Column Reinforced Foundation from Soil Behavior Fundamentals to Innovations in Geotechnical Engineering,” in From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering, Atlanta, Georgia, Feb. 2014, pp. 597–608. doi: 10.1061/9780784413265.048.
- [4] D. Muir Wood, W. Hu, and D. F. T. Nash, “Group effects in stone column foundations: model tests,” Géotechnique, vol. 50, no. 6, pp. 689–698, May 2015, doi: 10.1680/geot.2000.50.6.689.
- [5] M. A. Salam and Q. Wang, “Numerical Study on Bearing Capacity and Bulging of the Composite Stone Column,” Open Civ. Eng. J., vol. 15, no. 1, pp. 13–28, Mar. 2021, doi: 10.2174/1874149502115010013.
- [6] A. Madun et al., “Mathematical solution of the stone column effect on the load bearing capacity and settlement using numerical analysis,” J. Phys. Conf. Ser., vol. 995, p. 012036, Apr. 2018, doi: 10.1088/1742-6596/995/1/012036.
- [7] S. Magnusson, K. Lundberg, B. Svedberg, and S. Knutsson, “Sustainable management of excavated soil and rock in urban areas. Journal of Cleaner Production,” J. Clean. Prod., vol. 93, pp. 18–25, Apr. 2015, doi: 10.1016/j.jclepro.2015.01.010.
- [8] Y. Yuan, M. Zhao, Y. Xiao, and C. Yang, “Model Testing of Encased Stone Column Composite Foundations under Traffic Loads,” Adv. Civ. Eng., vol. 2021, pp. 1–11, Aug. 2021, doi: 10.1155/2021/6675176.
- [9] J.-J. Gao, H. Xu, J.-W. Qian, Y.-F. Gong, L.-T. Zhan, and P. Chen, “Settlement Behavior of Soft Subgrade Reinforced by Geogrid-Encased Stone Column and Geocell-Embedded Sand Cushion,” Adv. Civ. Eng., vol. 2020, pp. 1–11, Nov. 2020, doi: 10.1155/2020/8874520.
- [10] I. E. Debbabi, R. M. Saddek, A. S. A. Rashid, and A. S. Muhammed, “Numerical Modeling of Encased Stone Columns Supporting Embankments on Sabkha Soil,” Civ. Eng. J., vol. 6, no. 8, pp. 1593–1608, Aug. 2020, doi: 10.28991/cej-2020-03091569.
- [11] H. Meshkinghalam, M. Hajialilue-Bonab, and A. Khoshravan Azar, “Numerical investigation of stone columns system for liquefaction and settlement diminution potential,” Int. J. Geo-Eng., vol. 8, no. 1, p. 11, Dec. 2017, doi: 10.1186/s40703-017-0047-x.
- [12] M. O. Karkush and A. Jabbar, “Improvement of Soft Soil Using Linear Distributed Floating Stone Columns under Foundation Subjected to Static and Cyclic Loading,” Civ. Eng. J., vol. 5, no. 3, p. 702, Mar. 2019, doi: 10.28991/cej-2019-03091280.
- [13] M. A. Al-Obaydi and Z. A. Al-Kazzaz, “Analytical Study of Load-Settlement Behavior of Soil Treated with Stone columns having Different Sectional Shape.,” Key Eng. Mater., vol. 857, pp. 319–327, Aug. 2020, doi: 10.4028/www.scientific.net/KEM.857.319.
- [14] Beena K. S., “Ground Improvement using Stone Column,” presented at the International Conference on Case Histories in Geotechnical Engineering, San Diego, California, May 2010. [Online]. Available: https://scholarsmine.mst.edu/icrageesd/05icrageesd/session08/7
- [15] K. S. Amith and V. Ramana Murthy, “Numerical Analysis of Stone Columns in Soft Clay with Geotextile Encasement and Lime Stabilization,” in Soil Dynamics and Earthquake Geotechnical Engineering, vol. 15, B. Adimoolam and S. Banerjee, Eds. Singapore: Springer Singapore, 2019, pp. 169–176. doi: 10.1007/978-981-13-0562-7_19.
- [16] M. Y. Fattah and Q. G. Majeed, “Finite element analysis of geogrid encased stone columns,” Geotech. Geol. Eng., vol. 30, no. 4, pp. 713–726, Aug. 2012, doi: 10.1007/s10706-011-9488-8.
- [17] M. Y. Fattah, B. S. Zabar, and H. A. Hassan, “Experimental analysis of embankment on ordinary and encased stone columns,” Int. J. Geomech., vol. 16, no. 4, p. 04015102, Aug. 2016, doi: 10.1061/(ASCE)GM.1943-5622.0000579.
- [18] A. P. Ambily and S. R. Gandhi, “Behavior of stone columns based on experimental and FEM analysis,” J. Geotech. Geoenvironmental Eng., vol. 133, no. 4, pp. 405–415, Apr. 2007, doi: 10.1061/(ASCE)1090-0241(2007)133:4(405).
- [19] A. H. Ahmed A., “ANALYSIS OF STONE COLUMN IN SOFT SOIL BY FINITE ELEMENTS METHODS,” Iraqi J. Civ. Eng., vol. 7, no. 7, pp. 27–41, Feb. 2007, [Online]. Available: http://www.neevia.com/
- [20] R. M. Aminaton Marto, Farshad Helmi, Nima Latifi, and Mohsen Oghabi, “Performance Analysis of ReinforcedStone Columns Using Finite ElementMethod,” Electron. J. Geotech. Eng., vol. 18, p. 9, 2013, [Online]. Available: https://www.academia.edu/45268140/Performance_Analysis_of_Reinforced_Stone_Columns_Using_Finite_Element_Method
- [21] J. K. Mitchell and T. R. Huber, “Performance of a Stone Column Foundation,” J. Geotech. Eng., vol. 111, no. 2, pp. 205–223, Feb. 1985, doi: 10.1061/(ASCE)0733-9410(1985)111:2(205).
- [22] A. Sadrekarimi and A. Ghalandarzadeh, “Evaluation of gravel drains and compacted sand piles in mitigating liquefaction,” Proc. Inst. Civ. Eng. - Ground Improv., vol. 9, no. 3, pp. 91–104, Jul. 2005, doi: 10.1680/grim.2005.9.3.91.
- [23] A. M. Hanna, M. Etezad, and T. Ayadat, “Mode of Failure of a Group of Stone Columns in Soft Soil,” Int. J. Geomech., vol. 13, no. 1, pp. 87–96, Feb. 2013, doi: 10.1061/(ASCE)GM.1943-5622.0000175.
- [24] J. Chai and J. P. Carter, “Modelling Soft Clay Behaviour,” in Deformation Analysis in Soft Ground Improvement, vol. 18, Dordrecht: Springer Netherlands, 2011, pp. 7–55. doi: 10.1007/978-94-007-1721-3_2.
- [25] V. Raju and J. Daramalinggam, “Modern Geotechnical Practices,” in Geotechnical Design and Practice, K. Ilamparuthi and R. G. Robinson, Eds. Singapore: Springer Singapore, 2019, pp. 45–58. doi: 10.1007/978-981-13-0505-4_4.
- [26] K. Adalier, A. Elgamal, J. Meneses, and J. I. Baez, “Stone columns as liquefaction countermeasure in non-plastic silty soils,” Soil Dyn. Earthq. Eng., vol. 23, no. 7, pp. 571–584, Oct. 2003, doi: 10.1016/S0267-7261(03)00070-8.
- [27] M. Cudny and A. Truty, “Refinement of the Hardening Soil model within the small strain range,” Acta Geotech., vol. 15, no. 8, pp. 2031–2051, Aug. 2020, doi: 10.1007/s11440-020-00945-5.
- [28] C. Surarak, S. Likitlersuang, D. Wanatowski, A. Balasubramaniam, E. Oh, and H. Guan, “Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays,” Soils Found., vol. 52, no. 4, pp. 682–697, Aug. 2012, doi: 10.1016/j.sandf.2012.07.009.
- [29] T. Schanz and V. P. A. Bonnier P.G., Beyond 2000 in computational geotechnics: ten years of PLAXIS International; proceedings of the International Symposium Beyond 2000 in Computational Geotechnics, Amsterdam, the Netherlands, 18–20 March 1999. Rotterdam: Balkema, 1999.
- [30] B. G. Sexton and B. A. McCabe, “Modeling stone column installation in an elasto-viscoplastic soil,” Int. J. Geotech. Eng., vol. 9, no. 5, pp. 500–512, Oct. 2015, doi: 10.1179/1939787914Y.0000000090.
- [31] S. Benmebarek, A. Remadna, and N. Benmebarek, “Numerical Modelling of Stone Column Installation Effects on Performance of Circular Footing,” Int. J. Geosynth. Ground Eng., vol. 4, no. 3, p. 23, Sep. 2018, doi: 10.1007/s40891-018-0140-z.
- [32] S. Ellouze, M. Bouassida, Z. Bensalem, and M. N. Znaidi, “Numerical analysis of the installation effects on the behaviour of soft clay improved by stone columns,” Geomech. Geoengin., vol. 12, no. 2, pp. 73–85, Apr. 2017, doi: 10.1080/17486025.2016.1164903.
- [33] E. Fathi and R. Mohtasham, “Numerical Analysis of the Reinforced Stone Column by Geosynthetic on Stability of Embankment,” presented at the The World Congress on Civil, Structural, and Environmental Engineering, Mar. 2016. doi: 10.11159/icgre16.112.
- [34] J. Stacho and M. Sulovska, “Numerical Analysis of Soil Improvement for a Foundation of a Factory Using Stone Columns Made of Different Types of Coarse-grained Materials,” Period. Polytech. Civ. Eng., Jul. 2019, doi: 10.3311/PPci.13727.
- [35] K. S. Ng and S. A. Tan, “Design and analyses of floating stone columns,” Soils Found., vol. 54, no. 3, pp. 478–487, Jun. 2014, doi: 10.1016/j.sandf.2014.04.013.
- [36] K. S. Ng and S. A. Tan, “Nonlinear Behaviour of an Embankment on Floating Stone Columns,” Geomech. Geoengin., vol. 10, no. 1, pp. 30–44, Jan. 2015, doi: 10.1080/17486025.2014.902118.
- [37] Shien Kok, “Settlement Ratio of Floating Stone Columns for Small and Large Loaded Areas,” Int. J. Geo-Eng., vol. 12, no. 2, pp. 89–96, Jul. 2017, doi: DOI: 10.6310/jog.2017.12(2).5.
- [38] S. W. Abusharar and J. Han, “Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay,” Eng. Geol., vol. 120, no. 1–4, pp. 103–110, Jun. 2011, doi: 10.1016/j.enggeo.2011.04.002.
- [39] A. P. Ambily and S. R. Gandhi, “Behavior of Stone Columns Based on Experimental and FEM Analysis,” J. Geotech. Geoenvironmental Eng., vol. 133, no. 4, pp. 405–415, Apr. 2007, doi: 10.1061/(ASCE)1090-0241(2007)133:4(405).
- [40] R. Shivashankar, M. R. Dheerendra Babu, S. Nayak, and V. Rajathkumar, “Experimental Studies on Behaviour of Stone Columns in Layered Soils,” Geotech. Geol. Eng., vol. 29, no. 5, pp. 749–757, Sep. 2011, doi: 10.1007/s10706-011-9414-0.
- [41] A. GuhaRay and A. Roy, “Reliability Analysis of Stone Column Improved Soft Soil by Finite Element Approach,” in Latest Thoughts on Ground Improvement Techniques, H. Shehata and H. Poulos, Eds. Cham: Springer International Publishing, 2019, pp. 39–50. doi: 10.1007/978-3-030-01917-4_3.
- [42] A. B. Negesa, “Settlement Analysis of Pipe Culvert Situated in Soft Clay Treated with Prefabricated Vertical Drains,” Adv. Civ. Eng., vol. 2022, pp. 1–8, Mar. 2022, doi: 10.1155/2022/9569077.
- [43] C. Daya Reddy M, C. Ravi Kumar Reddy, and and K. Kowshik, “Performance Evaluation of Stone Column Installed Soft Ground-A Parametric Study with Numerical Investigation,” Int. J. Innov. Technol. Explor. Eng., vol. 8, 2018.
- [44] P. J. Venda Oliveira, J. L. P. Pinheiro, and A. A. S. Correia, “Numerical analysis of an embankment built on soft soil reinforced with deep mixing columns: Parametric study,” Comput. Geotech., vol. 38, no. 4, pp. 566–576, Jun. 2011, doi: 10.1016/j.compgeo.2011.03.005.
- [45] M. Gaber, A. Kasa, N. Abdul-Rahman, and J. Alsharef, “Simulation of Stone Column Ground Improvement (Comparison between Axisymmetric and Plane Strain),” Am. J. Eng. Appl. Sci., vol. 11, no. 1, pp. 129–137, Jan. 2018, doi: 10.3844/ajeassp.2018.129.137.
- [46] M. M. Killeen and B. A. McCabe, “Settlement performance of pad footings on soft clay supported by stone columns,” Soils Found., vol. 54, no. 4, pp. 760–776, Aug. 2014, doi: 10.1016/j.sandf.2014.06.011.
- [47] J. Castro and C. Sagaseta, “Consolidation and deformation around stone columns: Numerical evaluation of analytical solutions,” Comput. Geotech., vol. 38, no. 3, pp. 354–362, Apr. 2011, doi: 10.1016/j.compgeo.2010.12.006.
- [48] J. A. Black, V. Sivakumar, and A. Bell, “The settlement performance of stone column foundations,” Géotechnique, vol. 61, no. 11, pp. 909–922, Nov. 2011, doi: 10.1680/geot.9.P.014.
- [49] M. R. Mohtasham and M. Khodaparast, “Investigation of the Effect of Dimensional Characteristics of Stone Column on Load-Bearing Capacity and Consolidation Time,” Civ. Eng. J., vol. 4, no. 6, p. 1437, Jul. 2018, doi: 10.28991/cej-0309184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68649d79-abc8-49a8-a2eb-0974e860c64b