PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydroforming process of thin-walled tubular components with multiple local bulges

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the hydroforming process of a thin-walled tubular component with multiple local bulges, the bulge in the middle position is almost impossible to be formed with a conventional one-step hydroforming process because of the difficult axial feeding. To solve this problem, a novel method is proposed by preforming wrinkles using selective induction heating at different positions of tube blank to aggregate materials in advance for the subsequent hydroforming of tubular component with multiple local bulges. In this paper, the wrinkling behavior of 5052 aluminum alloy tube blank under different conditions and the deformation behavior of the wrinkled tube blank in subsequent hydroforming process of tubular component with three bulges are analyzed. It is shown that the existence of wrinkles is beneficial to increase the ultimate expansion ratio of the tube blank. Moreover, the instability behavior of multiple wrinkles on 5052 aluminum alloy tube blanks under different conditions was investigated by experiments. The process parameters for prefabricating two or three wrinkles, including temperature, spacing between wrinkles, and internal pressure, were determined through a detailed experimental investigation. Finally, the defects including splitting and undercut that occur in the hydroforming of tubular component with three bulges are analyzed, and the thin-walled tubular component with three bulges was hydroformed successfully using a wrinkled tube blank obtained under the process parameters of 250 °C, 4 mm, 5.5 MPa/350 °C, 10 mm, 2 MPa/400 °C, 6 mm, 1.33 MPa. These results provide insights for the manufacturing of tubular component with multiple local bulges from hard-to-form materials.
Rocznik
Strony
art. no. e169, 2023
Opis fizyczny
Bibliogr. 19 poz., fot., rys., wykr.
Twórcy
autor
  • National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
autor
  • China National Heavy Duty Truck Group Datong Gear Co., Ltd., Datong 037000, China
  • College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
autor
  • College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Bibliografia
  • 1. Reddy PV, Reddy BV, Ramulu PJ. Evolution of hydroforming technologies and its applications—a review. J Adv Manuf Syst. 2021;19:737–80. https://doi.org/10.1142/S0219686720500341.
  • 2. Stojanovic B, Bukvic M, Epler I. Application of aluminum and aluminum alloys in engineering. Appl Eng Lett. 2018;3:52–62. https://doi.org/10.18485/AELETTERS.2018.3.2.2.
  • 3. Kumar D, Phanden RK, Thakur L. A review on environment friendly and lightweight magnesium-based metal matrix com- posites and alloys. Mater Today Proc. 2021;38:359–64. https:// doi.org/10.1016/J.MATPR.2020.07.424.
  • 4. Chu E, Xu Y. Hydroforming of aluminum extrusion tubes for automotive applications Part I: buckling, wrinkling and bursting analyses of aluminum tubes. Int J Mech Sci. 2004;46:263–83. https://doi.org/10.1016/J.IJMECSCI.2004.02.014.
  • 5. Xia ZC. Failure analysis of tubular hydroforming. J Eng Mater Technol. 2001;123:423–9. https://doi.org/10.1115/1.1394966.
  • 6. Strano M. Design and modelling of parts, process and tooling in tube hydroforming. Hydroforming Adv Manuf. 2008. https://doi. org/10.1533/9781845694418.1.121.
  • 7. Yuan S, Wang X, Liu G, Wang ZR. Control and use of wrinkles in tube hydroforming. J Mater Process Technol. 2007;182:6–11. https://doi.org/10.1016/J.JMATPROTEC.2006.06.007.
  • 8. Lang L, Yuan S, Wang X, Wang ZR, Fu Z, Danckert J, Nielsen KB. A study on numerical simulation of hydroforming of alu- minum alloy tube. J Mater Process Technol. 2004;146:377–88. https://doi.org/10.1016/J.JMATPROTEC.2003.11.031.
  • 9. Lang L, Li H, Yuan S, Danckert J, Nielsen KB. Investigation into the pre-forming’s effect during multi-stages of tube hydroforming of aluminum alloy tube by using useful wrinkles. J Mater Process Technol. 2009;209:2553–63. https://doi.org/10.1016/J.JMATP ROTEC.2008.06.027.
  • 10. Tang ZJ, Liu G, Bin He Z, Yuan SJ. Wrinkling behavior of magne- sium alloy tube in warm hydroforming. Trans Nonferrous Met Soc China. 2010;20:1288–93. https://doi.org/10.1016/S1003-6326(09) 60292-2.
  • 11. Song WJ, Heo SC, Kim J, Kang BS. Investigation on preformed shape design to improve formability in tube hydroforming process using FEM. J Mater Process Technol. 2006;177:658–62. https:// doi.org/10.1016/J.JMATPROTEC.2006.04.084.
  • 12. Yuan SJ, Cui XL, Wang XS. Investigation into wrinkling behav- ior of thin-walled 5A02 aluminum alloy tubes under internal and external pressure. Int J Mech Sci. 2015;92:245–58. https://doi.org/ 10.1016/J.IJMECSCI.2014.12.017.
  • 13. Kang BH, Lee MY, Shon SM, Moon YH. Forming various shapes of tubular bellows using a single-step hydroforming process. J Mater Process Technol. 2007;194:1–6. https://doi.org/10.1016/J. JMATPROTEC.2007.02.029.
  • 14. Furushima T, Hung NQ, Manabe KI, Sasaki O. Development of semi-dieless metal bellows forming process. J Mater Process Technol. 2013;213:1406–11. https://doi.org/10.1016/J.JMATP ROTEC.2013.03.002.
  • 15. Zhang Z, Furushima T, Manabe K, Tada K, Sasaki O. Develop- ment of dieless metal bellows forming process with local heat- ing technique. Proceed Instit Mech Eng Part B J Eng Manuf. 2014;229:664–9. https://doi.org/10.1177/0954405413519610.
  • 16. Sedighi M, Shamsi M. A new approach in producing metal bellows by local arc heating: a parametric study. Int J Adv Manuf Technol. 2017;939:3211–9. https://doi.org/10.1007/S00170-017-0768-1.
  • 17. Cui XL, Lin P, Chi CZ, Beneficial wrinkle prefabrication method for improving high-pressure forming limit in tube, n.d. https://d. wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMjAzM jMSE0 NOMjA xOTEw MjE2M Tg2Lj dfc3E aCGh6 Z2x0M 3Nl (accessed November 17, 2020).
  • 18. Cui XL, Guo J, Wen SY, Wu XM, Lin P. Plastic wrinkling of thin- walled tubes under axial compression in non-uniform temperature field. Proc Inst Mech Eng Part C J Mech Eng Sci. 2022;237:406– 19. https://doi.org/10.1177/09544062221121987.
  • 19. Benham PP, Crawford RJ, Armstrong CG. Mechanics of engineer- ing materials, 2nd editio, Harlow. Essex: Longman; 1996.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-686262f7-d59d-40c8-9f90-87d557d29841
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.