PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Characterization of nanostructured bulk cobalt triantimonide doped with tellurium and indium prepared by pulsed plasma in liquid method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the ways to decrease thermal conductivity is nano structurization. Cobalt triantimonide (CoSb3) samples with added indium or tellurium were prepared by the direct fusion technique from high purity elements. Ingots were pulverized and re-compacted to form electrodes. Then, the pulsed plasma in liquid (PPL) method was applied. All materials were consolidated using rapid spark plasma sintering (SPS). For the analysis, methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) with a laser flash apparatus (LFA) were used. For density measurement, the Archimedes’ method was used. Electrical conductivity was measured using a standard four-wire method. The Seebeck coefficient was calculated to form measured Seebeck voltage in the sample placed in a temperature gradient. The preparation method allowed for obtaining CoSb3 nanomaterial with significantly lower thermal conductivity (10 Wm–1K–1 for pure CoSb3 and 3 Wm–1K–1 for the nanostructured sample in room temperature (RT)). The size of crystallites (from SEM observations) in the powders prepared was about 20 nm, joined into larger agglomerates. The Seebeck coefficient, α, was about –200μVK–1 in the case of both dopants, In and Te, in microsized material and about −400 μK−1 for the nanomaterial at RT. For pure CoSb3 , α was about 150 μVK−1 and it stood at −50 μVK−1 for nanomaterial at RT. In bulk nanomaterial samples, due to a decrease in electrical conductivity and inversion of the Seebeck coefficient, there was no increase in ZT values and the ZT for the nanosized material was below 0.02 in the measured temperature range, while for microsized In-doped sample it reached maximum ZT = 0.7 in (600K).
Rocznik
Strony
125--134
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
  • University Research Centre “Functional Materials”, Warsaw University of Technology
  • Łukasiewicz Research – Network Institute of Electronic Materials Technology
autor
  • Łukasiewicz Research – Network Institute of Electronic Materials Technology
autor
  • Łukasiewicz Research – Network Institute of Electronic Materials Technology
  • Łukasiewicz Research – Network Institute of Electronic Materials Technology
  • Faculty of Materials Science and Engineering, Warsaw University of Technology
autor
  • Institute of Technology, Pedagogical University of Krakow
autor
  • Department of Inorganic Chemistry, Faculty of Materials Science and Ceramic, AGH University of Science and Technology
  • Faculty of Materials Science and Engineering, Warsaw University of Technology
Bibliografia
  • [1] R. Zybała, M. Schmidt, K. Kaszyca, Ł. Ciupiński, M.J. Kruszewski, and K. Pietrzak, “Method and apparatus for determining operational parameters of thermoelectric modules”, J. Electron. Mater. 45 (10), 5223–5231 (2016).
  • [2] F.P. Brito, L. Figueiredo, L.A. Rocha, A.P. Cruz, L.M. Goncalves, J. Martins and M.J. Hall, “Analysis of the effect of module thickness reduction on thermoelectric generator output”, J. Electron. Mater. 45 (3), 1711–1729 (2016).
  • [3] K.T. Wojciechowski, R. Zybala, J. Leszczynski, P. Nieroda, M. Schmidt, R. Gajerski and E. Aleksandrova, “Performance characterization of high-efficiency segmented Bi 2Te3/CoSb3 unicouples for thermoelectric generators”, AIP Conf. Proc. 1449 (1), 467–470 (2012).
  • [4] G.J. Snyder and E.S. Toberer, “Complex thermoelectric materials”, Nat. Mater. 7 (2), 105–114 (2008).
  • [5] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials: Current research and future prospects”, Energy Environ. Sci. 2 (5), 466–479 (2009).
  • [6] P. Wen, B. Duan, P. Zhai, P. Li, and Q. Zhang, “Effect of thermal annealing on the microstructure and thermoelectric properties of nano-TiN/Co4Sb11.5Te0.5 composites”, J. Mater. Sci. Mater. Electron. 24 (12), 5155–5161 (2013).
  • [7] Ł. Ciupiński, M.J. Kruszewski, J. Grzonka, M. Chmielewski, R. Zielińsk, D. Moszczyńska and A. Michalski, “Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications”, Mater. Des. 120, 170–185 (2017).
  • [8] M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, and T. Koga, “Low-dimensional thermoelectric materials”, Phys. Solid State 41 (5), 679–682 (1999).
  • [9] Z.G. Chen, G. Hana, L. Yanga, L. Cheng, and J. Zou, “Nanostructured thermoelectric materials: Current research and future challenge”, Progress in Natural Science: Materials International 22 (6), 535–549 (2012).
  • [10] C. Gayner and K.K. Kar, “Recent advances in thermoelectric materials”, Progress in Materials Science 83, Elsevier Ltd, 330–382 (2016).
  • [11] K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid and M.G. Kanatzidis, “High-performance bulk thermoelectrics with all-scale hierarchical architectures”, Nature 489 (7416), 414–418 (2012).
  • [12] Y. Lin, X. Sun, and M.S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Binanowires”, Physical Review B 62 (7), 4610–4623 (2000).
  • [13] R. Zybala and K.T. Wojciechowski, “Anisotropy analysis of thermoelectric properties of Bi2 Te2.9 Se0.1 prepared by SPS method”, in AIP Conference Proceedings 1449, 393–396 (2012).
  • [14] R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński and K. Pietrzak, “Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications”, Arch. Metall. Mater. 62 (2), 1067–1070 (2017).
  • [15] S. Ballikaya, N. Uzar, S. Yildirim, J.R. Salvador, and C. Uher, “High thermoelectric performance of In, Yb, Ce multiple filled CoSb3based skutterudite compounds”, J. Solid State Chem. 193, 31–35 (2012).
  • [16] J. Dong, K. Yang, B. Xu, L. Zhang, Q. Zhang, and Y. Tian, “Structure and thermoelectric properties of Se- and Se/Te-doped CoSb3 skutterudites synthesized by high-pressure technique”, J. Alloys Compd. 647, 295–302 (2015).
  • [17] W.-S. Liu, B.-P. Zhang, J.-F. Li, H.-L. Zhang, and L.-D. Zhao, “Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering”, J. Appl. Phys. 102 (10), p. 103717 (2007).
  • [18] L. Deng, H.A. Ma, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, N. Dong, S.Z. Zheng and X. Jia, “Enhanced thermoelectric properties in Co4 Sb12−x Tex alloys prepared by HPHT”, Mater. Lett. 63 (24–25), 2139–2141 (2009).
  • [19] R. Zybała, M. Schmidt, P. Kamińska, M.J. Kruszewski, J. Grzonka, K. Pietrzak and Ł. Ciupiński, “Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquid”, Mater. Today Proc. 5 (4), 10316–10322 (2018).
  • [20] V. Kosalathip, A. Dauscher, B. Lenoir, S. Migot, and T. Kumpeerapun, “Preparation of conventional thermoelectric nanopowders by pulsed laser fracture in water: Application to the fabrication of a pn hetero-junction”, Appl. Phys. A Mater. Sci. Process. 93 (1), 235–240 (2008).
  • [21] J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak and A. Lisiecki, “Laser modification of the materials surface layer-a review paper”, Bull. Pol. Ac.: Tech. 60 (4), 711–728 (2012).
  • [22] D. Szabó and S. Schlabach, “Microwave Plasma Synthesis of Materials – From Physics and Chemistry to Nanoparticles: A Materials Scientist’s Viewpoint”, Inorganics 2 (3), 468–507 (2014).
  • [23] X.-K. Huynh, B.-W. Kim and J.-S. Kim, “Fabrication of Fe-TiB2 Nanocomposites by Spark-Plasma Sintering of a (FeB, TiH2) Powder Mixture”, Arch. Metall. Mater. 63 (2), 1043–1047 (2018).
  • [24] X. Chen, L. Liu, Y. Dong, L. Wang, L. Chen, and W. Jiang, “Preparation of nano-sized Bi2 Te3 thermoelectric material powders by cryogenic grinding”, Prog. Nat. Sci. Mater. Int. 22 (3), 201–206 (2012).
  • [25] K. Zaharieva, G. Vissokov, J. Grabis, and S. Rakovsky, “Plasma-chemical synthesis of nanosized powders-nitrides, carbides, oxides, carbon nanotubes and fullerenes”, Plasma Sci. Technol. 14 (11), 980–995 (2012).
  • [26] M.J. Kruszewski, R. Zybała, Ł. Ciupiński, M. Chmielewski, B. Adamczyk-Cieślak, A. Michalski, M. Rajska and K.J. Kurzydłowski, “Microstructure and Thermoelectric Properties of Bulk Cobalt Antimonide (CoSb3) Skutterudites Obtained by Pulse Plasma Sintering”, J. Electron. Mater. 45 (3), 1369–1376 (2016).
  • [27] Y. Liu, X. Li, Q. Zhang, L. Zhang, D. Yu, B. Xu and Y. Tian, “High Pressure Synthesis of p-Type”, Materials (Basel). 9 (4), p. 257 (2016).
  • [28] S. Sulaimankulova, E. Omurzak, J. Jasnakunov, A. Abdykerimova, H. Gafforova, and A. Mametova, “New preparation method of nanocrystalline materials by impulse plasma in liquid”, J. Clust. Sci. 20 (1), 37–49 (2009).
  • [29] M. Singh, M. Miyata, S. Nishino, D. Mott, M. Koyano, and S. Maenosono, “Chalcopyrite Nanoparticles as a Sustainable Thermoelectric Material”, Nanomaterials 5 (4), 1820–1830 (2015).
  • [30] G. Gabka, R. Zybała, P. Bujak, A. Ostrowski, M. Chmielewski, W. Lisowski, J.W. Sobczak and A. Pron, “Facile Gram-Scale Synthesis of the First n-Type CuFeS2 Nanocrystals for Thermoelectric Applications”, Eur. J. Inorg. Chem. 2017 (25), 3150–3153 (2017).
  • [31] K. Wei, X. Zeng, T.M. Tritt, A.R. Khabibullin, L.M. Woods, and G.S. Nolas, “Structure and transport properties of dense polycrystalline Clathrate-II (K, Ba)16(Ga, Sn)136 synthesized by a new approach employing SPS”, Materials (Basel) 9 (9), p. 732 (2016).
  • [32] D. Dobrynin, Y. Seepersad, M. Pekker, M. Shneider, G. Friedman, and A. Fridman, “Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: Fast imaging, spectroscopy and leader-type model”, J. Phys. D. Appl. Phys. 46 (10), p. 105201 (2013).
  • [33] E. Omurzak, T. Mashimo, S. Sulaimankulova, S. Takebe, L. Chen, Z. Abdullaeva, C. Iwamoto, Y. Oishi, H. Ihara, H. Okudera and A. Yoshiasa, “Wurtzite-type ZnS nanoparticles by pulsed electric discharge”, Nanotechnology 22 (36), p. 365602 (2011).
  • [34] S. Yatsu, H. Takahashf, H. Sasaki, N. Sakaguchi, K. Ohkubo, T. Muramoto and S. Watanabe, “Fabrication of nanoparticles by electric discharge plasma in liquid”, Arch. Metall. Mater. 58 (2), 425–429 (2013).
  • [35] E. Omurzak, J. Jasnakunov, N. Mairykova, A. Abdykerimova, A. Maatkasymova, S. Sulaimankulova, M. Matsuda, M. Nishida, H. Ihara and T. Mashimo, “Synthesis Method of Nanomaterials by Pulsed Plasma in Liquid”, J. Nanosci. Nanotechnol. 7 (9), 3157–3159 (2007).
  • [36] L. Chen, T. Mashimo, C. Iwamoto, H. Okudera, E. Omurzak, H.S. Ganapathy, H. Ihara, J. Zhang, Z. Abdullaeva, S. Takebe and A. Yoshiasa, “Synthesis of novel CoCx @C nanoparticles”, Nanotechnology 24 (4), p. 45602 (2013).
  • [37] M. A. Bratescu, N. Saito, and O. Takai, “Redox reactions in liquid plasma during iron oxide and oxide-hydroxide nanoparticles synthesis”, in Current Applied Physics 11 (5), suppl., S30–S34 (2011).
  • [38] H. Doi, E. Kikuchi, S. Takagi, and S. Shikano, “Selective assimilation by deposit feeders: Experimental evidence using stable isotope ratios”, Basic Appl. Ecol. 7 (2), 159–166 (2006).
  • [39] L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid”, J. Phys. Chem. C 115 (19), 9370–9375 (2011).
  • [40] Q. Chen, J. Li, and Y. Li, “A review of plasma-liquid interactions for nanomaterial synthesis”, J. Phys. D. Appl. Phys. 48 (42), p. 424005 (2015).
  • [41] Z. Abdullaeva, E. Omurzak, C. Iwamoto, H. Ihara, H.S. Ganapathy, S. Sulaimankulova, M. Koinuma and T. Mashimo, “Pulsed plasma synthesis of iron and nickel nanoparticles coated by carbon for medical applications”, Jpn. J. Appl. Phys. 52 (1) PART2, 1–4 (2013).
  • [42] L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa, “Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid”, J. Phys. Chem. C 115 (19), 9370–9375 (2011).
  • [43] R. Zybała, M. Schmidt, P. Kamińska, M.J. Kruszewski, J. Grzonka, K. Pietrzak and Ł. Ciupiński, “Skutterudite (CoSb3 ) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquid”, Mater. Today Proc. 5 (4), 10316–10322 (2018).
  • [44] G. Li, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, “Thermoelectric properties of indium-added skutterudites inx Co4 Sb12 ”, J. Electron. Mater. 42 (7), 1463–1468 (2013).
  • [45] P. Nieroda, K. Kutorasinski, J. Tobola, and K.T. Wojciechowski, “Search for Resonant-Like Impurity in Ag-Doped CoSb3 Skutterudite: Theoretical and Experimental Study”, J. Electron. Mater. 43 (6), 1681–1688 (2014).
  • [46] T. Caillat, A. Borshchevsky, and J.-P. Fleurial, “Properties of Single Crystalline Semiconducting CoSb3 ”, J. Appl. Phys. 80 (May 2013), p. 4442 (1996).
  • [47] O. Altun, Y. E. Boke, and A. Kalemtas, “Problems for determining the thermal conductivity of TBCs by laser-flash method”, J. Achiev. Mater. Manuf. Eng. 30 (2), 115–120 (2008).
  • [48] H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, “Characterization of Lorenz number with Seebeck coefficient measurement”, APL Mater. 3 (4), 1–14 (2015).
  • [49] E. Visnow, C.P. Heinrich, A. Schmitz, J. De Boor, P. Leidich, B. Klobes, R.P. Hermann, W.E. Müller and W. Tremel, “On the True Indium Content of In-Filled Skutterudites”, Inorg. Chem. 54 (16), 7818–7827 (2015).
  • [50] L. Wang, K.F. Cai, Y.Y. Wang, H. Li, and H.F. Wang, “Thermoelectric properties of indium-filled skutterudites prepared by combining solvothermal synthesis and melting”, Appl. Phys. A Mater. Sci. Process. 97 (4), 841–845 (2009).
  • [51] L. Deng, L.B. Wang, X.P. Jia, H.A. Ma, J.M. Qin, and Y.C. Wan, “Improvement of thermoelectric performance for Te-doped CoSb3 by higher synthesis pressure”, J. Alloys Compd. 602, 117–121 (2014).
  • [52] W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T. Tritt, “Recent advances in nanostructured thermoelectric half-Heusler compounds”, Nanomaterials 2 (4), 379–412 (2012).
  • [53] G. Li, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, “Thermoelectric properties of indium-added skutterudites Inx Co4 Sb12 ”, J. Electron. Mater. 42 (7), 1463–1468 (2013).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-686206fc-a91d-47fe-9d4d-afbe1a2377ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.