Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper states a complex study on the adaptive rescue cushion and concerns a problem of efficient impact mitigation, which is present during evacuation or assurance of people conducted by fire brigades. In order to minimize negative effects of person’s fall from height an airbag system is applied. Unfortunately, until now only passive solutions have been used. As a result, loads acting on a landing person were not minimized, because passive systems are designed for predefined, extreme conditions. Since the authors proposed to introduce adaptation mechanisms into the rescue cushion, a number of issues arose. They include construction and control of release vents, taking into account the inaccuracies of estimated impact parameters, and optimization of the venting area in case the evacuated person lands outside the airbag center. All these problems were addressed within this paper and described in detail. Discussion on the system adaptation and its optimization was preceded by experimental validation of a numerical model. The energy absorbing capabilities of widely used passive rescue cushions were significantly enhanced as a result of the conducted research.
Rocznik
Tom
Strony
art. no. e153436
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab., wykr.
Twórcy
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
autor
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
Bibliografia
- [1] M. Tanvi Newaz, M. Ershadi, L. Carothers, M. Jefferies, and P. Davis, “A review and assessment of technologies for addressing the risk of falling from height on construction sites,” Saf. Sci., vol. 147, p. 105618, 2022, doi: 10.1016/j.ssci.2021. 105618.
- [2] O. Aneziris et al., “Quantified risk assessment for fall from height,” Saf. Sci., vol. 46, no. 2, pp. 198–220, 2008, occupational Accident Scenarios, and Accident Analysis Papers selected from the third international conference Working on Safety (WOS2006), September 12-15th, 2006, Zeewolde, The Netherland.
- [3] M.-H. Noh and S.-Y. Lee, “Parametric impact performances in a new type crash cushion barrier system using an energy absorption pipe,” Int. J. Crashworthiness, vol. 25, no. 1, pp. 106–119, 2020, doi: 10.1080/13588265.2018.1524548.
- [4] J. Richert, D. Coutellier, C. Götz, and W. Eberle, “Advanced smart airbags: The solution for real-life safety?” Int. J. Crashworthiness, vol. 12, no. 2, pp. 159–171, 2007, doi: 10.1080/13588260701433461.
- [5] Y.M. Goh and P.E. Love, “Adequacy of personal fall arrest Energy absorbers in relation to heavy workers,” Saf. Sci., vol. 48, no. 6, pp. 747–754, 2010, doi: 10.1016/j.ssci.2010.02.020.
- [6] R. Faraj, B. Popławski, D. Gabryel, T. Kowalski, and K. Hinc, “Adaptive airbag system for increased evacuation safety,” Eng. Struct., vol. 270, p. 114853, 2022, doi: 10.1016/j.engstruct.2022.114853.
- [7] T. Tamura, T. Yoshimura, M. Sekine, M. Uchida, and O. Tanaka, “A wearable airbag to prevent fall injuries,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 6, pp. 910–914, 2009, doi: 10.1109/TITB.2009.2033673.
- [8] G. Mikułowski and R. Wiszowaty, “Pneumatic adaptive absorber: Mathematical modelling with experimental verification,” Math. Probl. Eng., vol. 2016, no. 1, p. 7074206, 2016, doi: 10.1155/2016/7074206.
- [9] C. Graczykowski and R. Faraj, “Development of control systems for fluid-based adaptive impact absorbers,” Mech. Syst. Signal Process., vol. 122, pp. 622–641, 2019, doi: 10.1016/j.ymssp.2018.12.006.
- [10] J. Zou, X. Guo, L. Xu, G. Tan, C. Zhang, and J. Zhang, “Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension,” Shock Vibr, vol. 2017, no. 1, p. 3186584, 2017, doi: 10.1155/2017/3186584.
- [11] C.A. Martínez and O. Curadelli, “Testing and performance of a new friction damper for seismic vibration control,” J. Sound Vibr., vol. 399, pp. 60–74, 2017, doi: 10.1016/j.jsv. 2017.03.022.
- [12] D. Rodak, M. Żurawski, M. Gmitrzuk, and L. Starczewski, “Possibilities of vacuum packed particles application in blast mitigation seats in military armored vehicles,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e138238, 2022, doi: 10.24425/bpasts.2021.138238.
- [13] P. Bartkowski, H. Bukowiecki, F. Gawiński, and R. Zalewski, “Adaptive crash energy absorber based on a granular jamming mechanism,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 1, p. e139002, 2022, doi: 10.24425/bpasts.2021.139002.
- [14] G. Mikułowski, R. Wiszowaty, and J. Holnicki-Szulc, “Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber,” Smart Materials and Structures, vol. 22, no. 12, p. 125011, Nov 2013, doi: .
- [15] J. Holnicki-Szulc, C. Graczykowski, G. Mikulowski, A. Mróz, P. Pawlowski, and R. Wiszowaty, “Adaptive impact absorption – the concept and potential applications,” Int. J. Prot. Struct., vol. 6, no. 2, pp. 357–377, 2015, doi: 10.1260/2041-4196.6.2.357.
- [16] R. Faraj and C. Graczykowski, “Hybrid prediction control for self-adaptive fluid-based shock-absorbers,” J. Sound Vibr., vol. 449, pp. 427–446, 2019, doi: 10.1016/j.jsv.2019.02.022.
- [17] C. Graczykowski and R. Faraj, “Extended identification-based predictive control for adaptive impact mitigation,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e145937, 2023, doi: 10.24425/bpasts.2023.145937.
- [18] R. Faraj, C. Graczykowski, and J. Holnicki-Szulc, “Adaptable pneumatic shock absorber,” J. Vibr. Control, vol. 25, no. 3, pp. 711–721, 2019, doi: 10.1177/1077546318795532.
- [19] T.F. Browder, “Fire escape,” US Patent 367 362, Aug. 2, 1887.
- [20] T.F. Browder, “Life-saving machine,” US Patent 952 871, Mar. 22, 1910.
- [21] M. Pisarek, “Sprzęt ratowniczy – skokochrony Część 1 (Rescue devices – rescue cushions part 1),” W akcji, no. 5, 2012, (in Polish).
- [22] DIN 14151-2, “Rescue blankets and cushions – part 2: Jumping sheets type 8 - requirements, testing,” Deutsches Institut für Normung, Standard, 2004.
- [23] J.T. Scurlock, “Inflatable safety cushion system for controlled deceleration from falls of great height,” US Patent 3 851 730, Dec. 3, 1974.
- [24] P. Lorsbach, “Safe escape mattress,” EPO Patent 0 200 998, Nov. 12, 1986.
- [25] DIN 14151-3, “Rescue cushions – part 3: Jumping cushion type 16 – requirements, testing,” Deutsches Institut für Normung, Standard, 2016.
- [26] M. Vetter, “Pneumatic jump rescue device,” DE Patent 100 29 193 B4, Oct. 04, 2007.
- [27] P. Geuenich and W. Schnicke, “Pneumatic emergency apparatus having hose frame and tarpaulin,” WO Patent 2020/089266, Oct. 30, 2019.
- [28] U. Kann and H. Koelsch, “Safety device for pressurised bottles,” EPO Patent 2330335, Jun. 08, 2011.
- [29] R. Faraj, T. Kowalski, D. Gabryel, B. Popławski, and J. Całka, “Układ adaptacyjnych zaworów upustowych poduszki powietrznej, w szczególności skokochronu, oraz zawierająca go poduszka powietrzna (System of adaptive release valves for an airbag, in particular the rescue cushion, and the airbag including the system),” 2022, Polish Patent Application P.441588.
- [30] Human Biomechanics and Simulations Standards Committee, Human Tolerance to Impact Conditions as Related to Motor Vehicle Design, Feb 2011, doi: 10.4271/J885_201102.
- [31] Versace, John, “A review of the severity index,” in 15th Stapp Car Crash Conference. SAE International, Feb 1971, doi: 10.4271/710881.
- [32] F. Bandak et al., “Development of improved injury criteria for the assessment of advanced automotive restraint systems : II,” The National Highway Traffic Safety Administration, Tech. Rep., Nov 1999. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/14738
- [33] H.-W. Henn, “Crash Tests and the Head Injury Criterion,” Teach. Math. Appl., vol. 17, no. 4, pp. 162–170, 12 1998, doi: 10.1093/teamat/17.4.162.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-685d6268-1b69-4fca-952e-94ce32ddb055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.