Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the design of optimized input shapers for non-vibrational control of flexible mechatronic systems. The described method is based on a combination of advantages from two approaches – precomputed control curves and on-line shapers. The strategy has two steps. Primarily, an optimized precomputed curve is found as a solution to the point-to-point control problem with respect to any requested optimization goals. Then it is transformed into an on-line shaper with the re-entry property. The resulting shaper transforms any arbitrary input signal to a non-vibrational one. In contrast to other techniques, the shaper length is not determined from the system natural frequency. The shaper can be easily modified with respect to position, velocity, acceleration or jerk control. The theoretical results are verified by experiments using a laboratory crane.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
353--368
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering Dept. of Mechanics, Biomechanics and Mechatronics, Prague, Czech Republic
autor
- Czech Technical University in Prague, Faculty of Mechanical Engineering Dept. of Mechanics, Biomechanics and Mechatronics, Prague, Czech Republic
Bibliografia
- 1. Aspinwall D.M., 1980, Acceleration profiles for minimizing residual response, Journal of Dynamic Systems, Measurement and Control, 102, 3-6
- 2. Benes P., 2012, Input Shaping Control with Generalised Conditions, Ph.D. Thesis (in Czech), Praha, CVUT v Praze ˇ
- 3. Benes P., Valasek M., 2008, Input shaping control with reentry commands on prescribed duration, Applied and Computational Mechanics, 2, 2, 227-234
- 4. Bhat S.P., Miu D.K., 1990, Precise point-to-point positioning control of flexible structures. Journal of Dynamics Systems, Measurements and Control, 4, 667-674
- 5. Bhat S.P., Miu D.K., 1991, Solutions to point-to-point control problems using laplace transform technique, Journal of Dynamics Systems, Measurement and Control, 113, 425-431
- 6. Chang P.H., Park H.S., 2005, Time-varying input shaping technique applied to vibration reduction of an industrial robot, Control Engineering Practise, 13
- 7. Heyden T., Woernle C., 2006, Dynamics and flatness-based control of kinematically undetermined cable suspension manipulator, Multibody System Dynamics, 16, 155-177
- 8. Kittnar Z., Valasek M., 2004, Nonlinear control of crane manipulator, Proceedings of International Congress on Mechatronics, Prague: CTU, Faculty of Mechanical Engineering, 109-115
- 9. Lau M.A., Pao L.Y., 2003, Input shaping and time-optimal control of flexible structures, Automatica, 39, 893-900
- 10. Lewis F.L., 1992, Applied Optimal Control and Estimation, New Jersey, Prentice-Hall, Inc., ISBN 0-13-040361-X
- 11. Miu D.K., 1993, Mechatronics, Electromechanics and Contromechanics, New York, Springer- -Verlag
- 12. Neusser Z., Valasek M., 2013, Control of the underactuated mechanical systems by harmonics, Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2013, Zagreb, University of Zagreb, 329-339
- 13. Osmic S., Berner M.O., Schwung A., Jost M., Monnigmann M., 2014, Flatness-based feedforward control for fast operating point transitions of compressor systems, Proceedings of 2014 IEEE Conference on Control Applications (CCA), 1753-1758
- 14. Park J.Y., Chang P.H., 2004, Vibration control of a telescopic handler using time delay control and commandless input shaping technique, Control Engineering Practise, 12
- 15. Piazzi A., Visioli A., 2002, Optimal dynamic-invesrion-based control of an overhead crane, IEE Proceedings Control Theory Applications, 149, 405-411
- 16. Post B.K., Mariuzza A., Book W.J., Singhose W., 2011, Flatness-based control of flexible motion systems, Proceedings of the ASME Dynamic Systems and Controls Conference, 843-850
- 17. Schindele D., Menn I., Aschemann H., 2009, Nonlinear optimal control of an overhead travelling crane, Proceedings of 18th IEEE Conference on Control Applications (CCA), 1045-1050
- 18. Singer N., Seering W., 1990, Preshaping command inputs to reduce system vibration, Journal of Dynamics Systems, Measurements and Control, 112, 76-82
- 19. Singh T., Vadali S.R., 1993, Robust time-delay control, ASME Journal of Dynamic Systems, Measurement and Control, 115, 303-306
- 20. Singhose W.E., 1997, Command Generation for Flexible Systems, s.l.: Massachusetts Institute of Technology
- 21. Singhose W.E., Seering W., 1991, Generating vibration reducing inputs with vector diagrams, Proceedings of 8th IFToMM World Congress, 315-318
- 22. Smith O.J.M., 1957, Posicast control of damped oscillatory systems, Poceedings of the IRE
- 23. Sugiyama S., Uchino K., 1986, Pulse driving method of piezoelectric motors, IEEE Journal, 637-640
- 24. Valasek M., 1995, Input shaping control of mechatronical systems, Proceedings of 9th World Congress IFTOMM, 3049-3052
- 25. Vyhlıdal T., Kuˇcera V., Hromˇc´ık M., 2012, Input shapers with uniformly distributed delays, Preprints of 10th IFAC Workshop on Time Delay Systems (accepted)
- 26. Wiederrich J.L., Roth B., 1974, Design of low vibration cam profiles, Conference on Cams and Cam Mechanisms, Liverpool
- 27. Zavrel J., Val ˇ a´ˇsek M., 2004, Anti-sway rotational crane (derrick), Proceedings of International Congress on Mechatronics, Prague, CTU, Faculty of Mechanical Engineering, 101-108
- 28. Zimmert N., Sawodny O., 2010, Active damping control for bending oscillations of a forklift ma
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-685c867b-3b02-4b90-a922-a700a8ee20f1