Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most of the basic control methods of the grid-connected converter (GCC) are defined to work with a sine wave grid voltage. In that case if the grid voltage is distorted by higher harmonics, the grid current may be distorted too, which, in consequence, may increase the value of the THD of the grid voltage. The paper deals with an improved finite control set model predictive control (FCS-MPC) method of an LCL-filtered GCC operating under distorted grid conditions. The proposed method utilizes supplementary grid current feedback to calculate the reference converter current. The introduced signal allows to effectively improve the operation when the grid is subject to harmonic distortion. The paper shows a simulation analysis of the proposed control scheme operating with and without additional feedback under grid distortions. To validate the practical feasibility of the proposed method an algorithm was implemented on a 32-bit microcontroller STM32F7 with a floating point unit to control a 10 kW GCC. The laboratory test setup provided experimental results showing properties of the introduced control scheme.
Rocznik
Tom
Strony
1069--1076
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
- [1] K. Kulikowski and A. Sikorski, “Modified algorithms of direct power control of AC/DC converter co-operating with the grid”, Arch. Electr. Eng. 61 (3), 373–388 (2012).
- [2] A. Godlewska, R. Grodzki, P. Falkowski, M. Korzeniewski, K. Kulikowski, and A. Sikorski, “Advanced control methods of DC/AC and AC/DC power converters – Look-up table and predictive algorithms”, in Advanced Control of Electrical Drives and Power Electronic Converters, J. Kabzinski, Ed. Cham: Springer International Publishing, pp. 221–302 (2017).
- [3] J. Scoltock, T. Geyer, and U. Madawala, “Model predictive direct current control for a grid-connected converter: LCL-filter versus L-filter”, in 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, 2013, pp. 576–581.
- [4] P. Channegowda and V. John, “Filter optimization for grid interactive voltage source inverters”, IEEE Trans. Ind. Electron., 57 (12), 4106–4114 (2010).
- [5] E. Twining and D.G. Holmes, “Grid current regulation of a three-phase voltage source inverter with an LCL input filter”, IEEE Trans. Power Electron. 18 (3), 888–895 (2003).
- [6] S. Piasecki, M. Jasiński, G. Wrona, and W. Chmielak, “Robust control of grid connected AC-DC converter for distributed generation”, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, 2012, pp. 5840–5845.
- [7] A.V. Stankovic and K. Chen, “A new control method for input-output harmonic elimination of the PWM boost-type rectifier under extreme unbalanced operating conditions”, IEEE Trans. Ind. Electron. 56 (7), 2420–2430 (2009).
- [8] R.N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C.L. Bak, “A review of passive power filters for three-phase grid-connected voltage-source converters”, IEEE J. Emerg. Sel. Top. Power Electron. 4 (1), 54–69 (2016).
- [9] V. Blasko and V. Kaura, “A novel control to actively damp resonance in input LC filter of a three phase voltage source converter”, Proceedings of Applied Power Electronics Conference. APEC ’96, San Jose, CA, USA, vol. 2, 1996, pp. 545–551.
- [10] R. Peña-Alzola, M. Liserre, F. Blaabjerg, R. Sebastián, J. Dannehl, and F.W. Fuchs, “Systematic design of the lead-lag network method for active damping in LCL-filter based three phase converters”, IEEE Trans. Ind. Inf. 10 (1), 43–52 (2014).
- [11] M. Malinowski and S. Bernet, “A simple voltage sensorless active damping scheme for three-phase PWM converters with an LCL filter”, IEEE Trans. Ind. Electron. 55 (4), 1876–1880 (2008).
- [12] D. Pan, X. Wang, F. Blaabjerg, and H. Gong, “Active damping of LCL-filter resonance using a digital resonant-notch (biquad) filter”, 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, 2018, pp. P.1–P.9.
- [13] C.A. Rojas, J. Fletcher, P. Acuna, R.P. Aguilera, and J.P. Astorga, “Model predictive control of a multi-string LCL-type grid-connected H -NPC PV converter”, 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, QLD, 2018, pp. 252–257.
- [14] A. Godlewska, “Effects of the grid disturbances on current source rectifier controlled by FCS-MPC algorithm”, Power Electron. Drives 38 (3), 11–22 (2018).
- [15] N. Panten, N. Hoffmann, and F.W. Fuchs, “Finite control set model predictive current control for grid-connected voltage-source converters with LCL filters: A study based on different state feedbacks”, IEEE Trans. Power Electron. 31 (7), 5189–5200 (2016).
- [16] P. Falkowski and A. Sikorski, “Finite control set model predictive control for grid-connected AC–DC converters with LCL filter”, IEEE Trans. Ind. Electron. 65 (4), 2844–2852 (2018).
- [17] T. Dragičević, C. Zheng, J. Rodriguez, and F. Blaabjerg, “Robust quasi-predictive control of LCL-filtered grid converters”, IEEE Trans. Power Electron. 35 (2), 1934–1946 (2020).
- [18] M.P. Kazmierkowski, M. Jasinski, and G. Wrona, “DSP-based control of grid-connected power converters operating under grid distortions”, IEEE Trans. Ind. Inf. 7 (2), 204–211 (2011).
- [19] G. Iwanski, T. Luszczyk, and M. Szypulski, “Virtual-torque-based control of three-phase rectifier under grid imbalance and harmonics”, IEEE Trans. Power Electron. 32 (9), 6836–6852 (2017)
- [20] P. Falkowski, K. Kulikowski, and R. Grodzki, “Predictive and look-up table control methods of a three-level ac-dc converter under distorted grid voltage”, Bull. Pol. Ac.: Tech. 65 (5), 609–618 (2017).
- [21] W. Śleszyński, A. Cichowski, and P. Mysiak, “Current harmonic controller in multiple reference frames for series active power filter integrated with 18-pulse diode rectifier”, Bull. Pol. Ac.: Tech. 66 (5), 699–704 (2018).
- [22] A. Vidal et al., “Assessment and optimization of the transient response of proportional-resonant current controllers for distributed power generation systems”, IEEE Trans. Ind. Electron. 60 (4), 1367–1383 (2013).
- [23] K. Antoniewicz and K. Rafal, “Model predictive current control method for four-leg three-level converter operating as shunt active power filter and grid connected inverter”, Bull. Pol. Ac.: Tech. 65 (5), 601–607 (2017).
- [24] R. Guzmán, L. García de Vicuña, M. Castilla, J. Miret, and A. Camacho, “Finite control set model predictive control for a three-phase shunt active power filter with a Kalman filter-based estimation”, Energies 10 (10), 1553 (2017).
- [25] P. Falkowski, “Model predictive control of grid-connected power converters with LCL filter and additional feedback”, 2019 IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Quanzhou, China, 2019, pp. 1–5.
- [26] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter”, IEEE Trans. Ind. Electron. 59 (2), 1323–1325 (2012).
- [27] M. Bobrowska-Rafal, K. Rafal, M. Jasinski, and M.P. Kazmierkowski, “Grid synchronization and symmetrical components extraction with PLL algorithm for grid connected power electronic converters – a review”, Bull. Pol. Ac.: Tech. 59 (4), 485–497 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-685aa8a6-8f0f-4f06-a1df-8e9336196d86