Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Łańcuchy wartości w przemyśle surowcowym na potrzeby nowoczesnych technologii - przykład litu
Języki publikacji
Abstrakty
This paper presents concepts of value chains as strategic models for long-term development and a sustainable approach for ensuring efficiency. It highlights the fact that value chains are of particular importance in the raw materials industry, where the exploration, extraction, processing and metallurgy stages are characterized by high capital expenditure and fixed costs. Additionally, it emphasizes that offering an increasingly valuable product at each stage of production or processing makes it possible to increase earnings and achieve a higher margin. In order to give a practical dimension to the presented analyses, the paper provides an example of lithium value chains and identifies the determinants of their functioning in the current market together with their prospects. The conclusion highlights Europe’s need to source raw materials within business models based on value chains.
W artykule przedstawiono koncepcje łańcuchów wartości jako strategicznych modeli rozwoju długoterminowego i zapewnienia efektywności w zrównoważonym ujęciu. Wskazano, że mają one szczególne znaczenie w przemyśle surowcowym, gdzie etapy związane z eksploracją, wydobyciem, przetwórstwem i metalurgią charakteryzują się dużymi wydatkami inwestycyjnymi i kosztami stałymi. Z drugiej strony podkreślono, że oferowanie coraz bardziej wartościowego produktu na każdym etapie produkcji czy przetworzenia pozwala zarabiać i osiągać wyższe marże. Dla praktycznego wymiaru zaprezentowanych analiz przytoczono przykład łańcucha wartości dla litu oraz wskazano determinanty jego funkcjonowania na obecnym rynku wraz z perspektywami. W konkluzji zwrócono uwagę na potrzeby Europy co do pozyskania surowców w ramach modeli biznesowych opartych na łańcuchach wartości.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--22
Opis fizyczny
Bibligr. 39 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
autor
- AGH University of Science and Technology, Poland
Bibliografia
- [1] Andersen et al. 2020 – Andersen, A.D., Steen, M., Mäkitie, T., Hanson, J., Thune, T.M. and Soppe, B. 2020. The role of inter-sectoral dynamics in sustainability transitions : a comment on the transitions research agenda. Environmental Innovation and Societal Transition 34, pp. 348-351, DOI: 10.1016/j.eist.2019.11.009.
- [2] Awan et al. 2022 – Awan, U., Sroufe, R. and Bozan, K. 2022. Designing Value Chains for Industry 4.0 and a Circular Economy: A Review of the Literature. Sustainability 14, DOI: 10.3390/su14127084.
- [3] Bobba et al. 2020 – Bobba, S., Carrara, S., Huisman, J., Mathieux, F. and Pavel, C. 2020. Critical Raw Materials for Strategic Technologies and Sectors in the EU- A Foresight Study. [Online] https://rmis.jrc.ec.europa.eu/uploads/CRMs_for_Strategic_Technologies_and_Sectors_in_the_EU_2020.pdf [Accessed: 2023-09-10] DOI: 10.2873/58081.
- [4] Bolewski et al. 1976 – Bolewski, A., Blaschke, W., Blaschke, Z., Pawlikowski, S., Smakowski, T., Wutcen, E. and Żabiński,W. 1976. Minerals of the world Al-Be-Li-Mg, Lit (Surowce mineralne świata Al-Be-Li-Mg, Lit), pp. 225-271, Warszawa: Wyd. Geol. (in Polish).
- [5] Bloomberg NEF. Will the Real Lithium Demand Please Stand Up? Challenging the 1Mt-by-2025 Orthodoxy. [Online] https://about.bnef.com/blog/will-the-real-lithium-demand-please-stand-up-challenging-the-1mt-by-2025-orthodoxy/ [Accessed: 2023-09-10].
- [6] CME. Top Lithium Supply Chains for Electric Vehicles. [Online] https://www.climateminerals.org/top-supply-chains [Accessed: 2023-09-08].
- [7] Communication from the Commission to the European Parliament and the Council 2008 (COM 2008). The raw materials initiative — meeting our critical needs for growth and jobs in Europe. [Online] https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52008DC0699 [Accessed: 2023-08-03].
- [8] ECLAC 2023. Lithium extraction and industrialization. Opportunities and challenges for Latin America and the Caribbean. [Online] https://repositorio.cepal.org/server/api/core/bitstreams/8d505030-7686-44e1-9f60-77ceb0610826/content [Accessed: 2023-09-15].
- [9] Galbraith, J.R. 1983. Strategy and organization planning. Human Resource Management 22, DOI: 10.1002/hrm.3930220110.
- [10] Galbraith, J.R. 1985. Evolution without revolution: Sequent computer systems. Human Resource Management 24, DOI: 10.1002/hrm.3930240103.
- [11] Grohol, M. and Veeh, C. 2023. Study on the critical raw materials for the EU 2023: final report, Publications Office of the European Union. [Online] https://op.europa.eu/en/publication-detail/-/publication/57318397-fdd4-11ed-a05c-01aa75ed71a1 [Accessed: 2023-08-03].
- [12] Gereffi, G. 1999. International trade and industrial upgrading in the apparel commodity chain. Journal of International Economics 48, pp. 37-70, DOI: 10.1016/S0022-1996(98)00075-0.
- [13] Hailes, O. 2022. Lithium in International Law: Trade, Investment, and the Pursuit of Supply Chain Justice. Journal of International Economic Law 25(1), pp. 148-170, DOI: 10.1093/jiel/jgac002.
- [14] Hanghøj, K. and Gauss, R. 2018. Raw Materials for sustainable development: Opportunities and challenges. Symposium on the availability of raw materials from secondary sources, Special Workshop on Waste Valorization and Critical Raw Materials. [Online] https://unece.org/fileadmin/DAM/energy/se/pp/unfc_egrm/egrc9_apr2018/ws_24_April/p.3_Hanghoj.pdf [Accessed: 2023-09-25].
- [15] Hill et al. 2019 – Hill, N., Clarke, D., Blair, L. and Menadue, H. 2019. Circular economy perspectives for the management of batteries used in electric vehicles, Final Project Report by Ricardo Energy & Environment for the JRC, Publications Office of the European Union, Luxembourg. DOI: 10.2760/537140, JRC117790.
- [16] IEA 2023. Global EV outlook 2023. [Online] https://www.iea.org/reports/global-ev-outlook-2023 [Accessed: 2023-08-09].
- [17] IEA 2021. The role of Critical minerals in clean energy Transitions. World energy outlook special report. [Online] https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf [Accessed: 2023-09-15].
- [18] Jaskula, B.W. 2023. Lithium. [In:] U.S. Geological Survey, Mineral Commodity Summaries, pp. 108-109 [Online] https://pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdf [Accessed: 2023-09-09].
- [19] JRC 2020. RMIS – Raw Materials in the battery value chain; European Commision. [Online] https://op.europa.eu/en/publication-detail/-/publication/33930a0e-7a09-11ea-b75f-01aa75ed71a1 [Accessed: 2023-08-09].
- [20] Kano, L. 2018. Global value chain governance: A relational perspective. Journal of International Business Studies 49, pp. 684-705, DOI: 10.1057/s41267-017-0086-8.
- [21] Lu, M. 2023. Global EV Production: BYD Surpasses Tesla. [Online] https://www.visualcapitalist.com/global-ev-production-byd-surpasses-tesla/ [Accessed: 2023-09-11].
- [22] Lorenc et al. 2023 – Lorenc, S., Leśniak, T., Kustra, A. and Sierpińska, M. 2023. Evolution of Business Models of Mining and Energy Sector Companies according to Current Market Trends. Energies 16(13), DOI: 10.3390/en16135212.
- [23] Mäkitie et al. 2022 – Mäkitie, T., Hanson, J., Steen, M., Hansen, T. and Andersen, A.D. 2022. Complementarity formation mechanisms in technology value chains. Research Policy 51(7), DOI: 10.1016/j.respol.2022.104559.
- [24] Malhotra et al. 2019 – Malhotra, A., Schmidt, T.S. and Huenteler, J. 2019. The role of inter-sectoral learning in knowledge development and diffusion: case studies on three clean energy technologies. Technological Forecasting and Social Change 146, pp. 464-487, DOI: 10.1016/j.techfore.2019.04.018.
- [25] McKinsey & Company 2023. Battery 2030: Resilient, sustainable, and circular. [Online] https://www.scribd.com/document/635702069/Untitled [Accessed: 2023-09-18].
- [26] Morrison et al. 2007 – Morrison, A., Pietrobelli, C. and Rabellotti, R. 2007. Global value chains and technological capabilities: a framework to study learning and innovation in developing countries. Oxford Development Studies 36(1), pp. 39-58, DOI: 10.1080/13600810701848144.
- [27] Musiolik, J. and Markard, J. 2011. Creating and shaping innovation systems: formal networks in the innovation system for stationary fuel cells in Germany. Energy Policy 39(4), pp. 1909-1922, DOI: 10.1016/j.enpol.2010.12.052.
- [28] OECD 2019. Global Material Resources Outlook to 2060: Economics Drivers and Environmental Consequences. [Online] https://www.oecd.org/publications/global-material-resources-outlook-to-2060-9789264307452-en.htm [Accessed: 2023-08-03].
- [29] Pavitt, K. 1984. Sectoral patterns of technical change: Towards a taxonomy and a theory. Research Policy 13(6), pp. 343-373, DOI: 10.1016/0048-7333(84)90018-0.
- [30] Porter, M.E. 1985. The Competitive Advantage: Creating and Sustaining Superior Performance. NY: Free Press.
- [31] Regulation of the European Parliament and of the Council 2023 (COM 2023). Establishing a framework for ensuring a secure and sustainable supply of critical raw materials and amending Regulations (EU) 168/2013, (EU) 2018/858, 2018/1724 and (EU) 2019/1020. [Online] https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52023PC0160 [Accessed: 2023-08-07].
- [32] Sarc et al. 2019 – Sarc, R., Curtis, A., Kandlbauer, L., Khodier, K., Lorber, K.E. and Pomberger, R. 2019. Digitalisation and intelligent robotics in value chain of circular economy oriented waste management – A review. Waste Management 95, pp. 476-492, DOI: 10.1016/j.wasman.2019.06.035.
- [33] Staritz et al. 2011 – Staritz, C., Gereffi, G. and Cattaneo, O. 2011. Shifting end markets and upgrading prospects in global value chains. International Journal of Technological Learning, Innovation and Development 4(2).
- [34] Sandén, B.A. and Hillman, K.M. 2011. A framework for analysis of multi-mode interaction among technologies with examples from the history of alternative transport fuels in Sweden. Resource Policy 40(3), pp. 403-414, DOI: 10.1016/j.respol.2010.12.005.
- [35] Stephan et al. 2017 – Stephan, A., Schmidt, T.S., Bening, C.R. and Hoffmann, V.H. 2017. The sectoral configuration of technological innovation systems: patterns of knowledge development and diffusion in the lithium-ion battery technology in Japan. Resource Policy 46(4), pp. 709-723, DOI: 10.1016/j.respol.2017.01.009.
- [36] Szlugaj, J. and Radwanek-Bąk, R. 2022. Lithium sources and their current use, mineral resources management. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(1), pp. 61-88, DOI: 10.24425/gsm.2022.140613.
- [37] S&P Global 2023. Flood of cash in exploration drives up lithium reserves, resources. [Online] https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/flood-of-cash-in-exploration-drives-up-lithium-reserves-resources-76763229 [Accessed: 2023-09-17].
- [38] The European Committee of the Regions (CoR) 2021. Critical raw materials and their role in the future of Europe. [Online] https://cor.europa.eu/pl/news/Pages/critical-raw-materials-role-future-of-europe.aspx [Accessed: 2023-08-03].
- [39] World Bank Group 2017. The Growing Role of Minerals and Metals for a Low Carbon Future.[Online] https://documents1.worldbank.org/curated/en/207371500386458722/pdf/117581-WP-P159838-PUBLIC-ClimateSmart-MiningJuly.pdf [Accessed: 2023-08-03].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68577b19-5088-41ca-a584-9ec129a06bdf