PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Control and grid synchronization of two level voltage source inverter under temporary voltage unbalance

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sterowanie oraz synchronizacja dwupoziomowego falownika napięcia w warunkach przejściowej asymetrii napięć sieci
Języki publikacji
EN
Abstrakty
EN
This paper presents the operation of grid tied, two level voltage source inverter (VSI) during network voltage unbalance. The control system was implemented in synchronous rotating reference frame dq0 (SRF). Two types of control structures were investigated herein. First utilizes the Double Decoupled SRF Phase-locked loop (DDSRF-PLL) synchronisation with positive and negative sequence currents control. Second one is simplified system that does not provide symmetrical components decomposition and decoupling for synchronisation. Simulation results exhibited a superior performance of the DDSRF-PLL control system under grid voltage unbalance.
PL
Niniejszy artykuł przedstawia pracę dwupoziomowego falownika napięcia współpracującego z siecią, podczas przejściowej asymetrii napięć. System sterowania został zaimplementowany w wirującym układzie synchronicznym dq0. Przeanalizowano dwa typy sterowania. W pierwszym zastosowano metodę synchronizacji z odprzęganiem DDSRF-PLL wraz z możliwością kontroli prądów składowej zgodnej i przeciwnej. Drugi natomiast w swoje uproszczeni formie nie pozwalała na sterowanie obu składowych symetrycznych, zabrakło również odprzęgania podczas synchronizacji z siecią. Wyniki symulacji pokazały o wiele lepsze działanie pierwszej metody sterowania.
Słowa kluczowe
Rocznik
Tom
Strony
26--31
Opis fizyczny
Bibliogr. 83 poz., rys., tab.
Twórcy
  • Lublin University of Technology, Department of Electrical Drives and Machines
Bibliografia
  • [1] Abrishamifar A., Ahmad A.A., Mohamadian M.: Fixed switching frequency sliding mode control for single-phase unipolar inverters. IEEE Transactions on Power Electronics 27(5)/2012, 2507–2514.
  • [2] Alarcón-Gallo E., De Vicuña L.G., Castilla M., Miret J., Matas J., Camacho A.: Decoupled sliding mode control for three-phase LCL VSI operating at fixed switching frequency. IEEE International Symposium on Industrial Electronics, 2012, 1572–1578.
  • [3] Antoniewicz P., Kazmierkowski M.P.: Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation. IEEE Transactions on Industrial Electronics 55(12)/2008, 4381–4390.
  • [4] Bianchi N., Dai Pre M.: Active power filter control using neural network technologies. IEE Proceedings-Electric Power Applications 150(2)/2003, 139–145.
  • [5] Bibian S., Jin H.: High performance predictive dead-beat digital controller for dc power supplies. IEEE Transactions on Power Electronics 17(3)/2002, 420–427.
  • [6] Bollen M.H.J.: Voltage recovery after unbalanced and balanced voltage dips in three-phase systems. IEEE Transactions on Power Delivery 18(4)/2003, 1376–1381.
  • [7] Bollen M.H.J., Zhang L.D.: Different methods for classification of three-phase unbalanced voltage dips due to faults. Electric Power Systems Research 66(1)/2003, 59–69.
  • [8] Bouafia A., Krim F., Gaubert J.P.: Design and implementation of high performance direct power control of three-phase PWM rectifier, via fuzzy and PI controller for output voltage regulation. Energy Conversion and Management 50(1)/2009, 6–13.
  • [9] Bouafia A., Krim F., Gaubert J.P.: Fuzzy-Logic-Based Switching State Selection for Direct Power Control of Three-Phase PWM Rectifier. IEEE Trans. Ind. Electron. 56(6)/2009, 1984–1992.
  • [10] Busada C.A., Gomez Jorge S., Solsona J.A.: Full-State Feedback Equivalent Controller for Active Damping in LCL-Filtered Grid-Connected Inverters Using a Reduced Number of Sensors. IEEE Transactions on Industrial Electronics 62(10)/2015, 5993–6002.
  • [11] Buso S., Fasolo S., Malesani L., Mattavelli P.: A dead-beat adaptive hysteresis current control. IEEE Transactions on Industry Applications 36(4)/2000, 1174–1180.
  • [12] Cai H., Wei W., Peng Y., Hu H.: Fuzzy Proportional-Resonant Control Strategy for Three-Phase Inverters in Islanded Micro-Grid with Nonlinear Loads, 2014.
  • [13] Carpita M. Marchesoni M.: Experimental study of a power conditioning system using sliding\nmode control. IEEE Transactions on Power Electronics 11(5)/1996.
  • [14] Chang F.J., Chang E.C., Liang T.J., Chen J.F.: Digital-signal-processor-based DC/AC inverter with integral-compensation terminal sliding-mode control. IET Power Electronics 4(1)/2011, 159.
  • [15] Chen B.S. Joos G.: Direct Power Control of Active Filters With Averaged Switching Frequency Regulation. IEEE Transactions on Power Electronics 23(6)/2008, 2729–2737.
  • [16] Choi J.W. Sul S.K.: Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling. IEEE Transactions on Power Electronics 13(1)/1998, 179–185.
  • [17] Davoodnezhad R., Holmes D.G., McGrath B.P.: A novel three-level hysteresis current regulation strategy for three-phase three-level inverters. IEEE Transactions on Power Electronics 29(11)/2014, 6100–6109.
  • [18] Dirscherl C., Fessler J., Hackl C.M., Ipach H.: State-feedback controller and observer design for grid-connected voltage source power converters with LCLfilter. 2015 IEEE Conference on Control and Applications, CCA 2015 - Proceedings, 2015, 215–222.
  • [19] Escobar G., Stankovic A.M., Carrasco J.M., Galvan E. Ortega, R.: Analysis and design of direct power control (DPC) for a three phase synchronous rectifier via output regulation subspaces. IEEE Transactions on Power Electronics 18(3)/2003, 823–830.
  • [20] Galecki A., Kaszewski A., Ufnalski B., Grzesiak L.M.: State Current Controller with Oscillatory Terms for Three-level Grid-connected PWM Rectifiers under Distorted Grid Voltage Conditions. 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, 1–10.
  • [21] Galecki A., Kaszewski A., Ufnalski B., Grzesiak L.M.: LQ current control for three-phase PWM rectifiers under unbalanced grid voltage conditions. Proceedings - 2015 9th International Conference on Compatibility and Power Electronics, CPE 2015, 2015, 191–196.
  • [22] García-Triviño P., Gil-Mena A.J., Llorens-Iborra F., García-Vázquez C.A., Fernández-Ramírez L.M., Jurado F.: Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system. Energy Conversion and Management 91, 2015, 83–92.
  • [23] Geyer T., Oikonomou N., Papafotiou G., Kieferndorf F.D. Model predictive pulse pattern control. IEEE Transactions on Industry Applications 48(2)/2012, 663–676.
  • [24] Gokhale K.P., Kawamura A., Hoft R.G.: Dead beat microprocessor control of pwm inverter for sinusoidal output waveform synthesis. IEEE Transactions on Industry Applications IA-23, 5/1987, 901–910.
  • [25] Guerrero-Rodríguez N.F., Rey-Boué A.B., Herrero-de Lucas L.C., Martinez Rodrigo F.: Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances. Renewable Energy 80/2015, 380–395.
  • [26] Hao X., Yang X., Liu T., Huang L., Chen W.: A sliding-mode controller with multiresonant sliding surface for single-phase grid-connected VSI with an LCL filter. IEEE Transactions on Power Electronics 28(5)/2013, 2259–2268.
  • [27] Hu J. He Y.: Modeling and control of grid-connected voltage-sourced converters under generalized unbalanced operation conditions. IEEE Transactions on Energy Conversion 23(3)/2008, 903–913.
  • [28] Hu J., Shang L., He Y., Zhu Z.Z.: Direct Active and Reactive Power Regulation of Grid-Connected DC/AC Converters Using Sliding Mode Control Approach. IEEE Transactions on Power Electronics 26(1)/2011, 210–222.
  • [29] Hu J., Zhu Z.Q.: Investigation on switching patterns of direct power control strategies for grid-connected DC-AC converters based on power variation rates. IEEE Transactions on Power Electronics 26(12)/2011, 3582–3598.
  • [30] IEC. IEC 61000-2-5: Electromagnetic compatibility (EMC) - Part 2-5: Environment - Description and classification of electromagnetic environmen. 1995.
  • [31] IEEE. IEEE Std 1159TM -2009, IEEE Recommended Practice for Monitoring Electric Power Quality. 2009.
  • [32] Ignatova V., Granjon P., Bacha S., Dumas F.: Classification and characterization of three phase voltage dips by space vector methodology. Future Power Systems, 2005 International Conference on, Generic 6/2005.
  • [33] Iov F., Hansen A.D., Sorensen P.: Mapping of grid faults and grid codes. 2007.
  • [34] Jarzyna W.: TERMS OF THE TURBINE AND GENERATOR CHOICE OF WIND POWER STATIONS. Rynek Energii 1(4)/2011, 102–106.
  • [35] Jarzyna W., Lipnicki P.: The comparison of Polish grid codes to certain European standards and resultant differences for WPP requirements. 2013 15th European Conference on Power Electronics and Applications, EPE 2013, June 2013, 1–6.
  • [36] Jung S.L., Tzou Y.Y.: Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve. IEEE Transactions on Power Electronics 11(4)/1996, 567–577.
  • [37] Kacejko P., Machowski J.: Zwarcia w Systemach Elektroenergetycznych. WNT, 2013.
  • [38] Kazmierkowski M.P., Malesani L.: Current control techniques for three-phase voltage-source PWM converters: a survey. IEEE Transactions on Industrial Electronics 45(5)/1998, 691–703.
  • [39] Komurcugil H., Ozdemir S., Sefa I., Altin N., Kukrer O.: Sliding-Mode Control for Single-Phase Grid-Connected LCL-Filtered VSI With Double-Band Hysteresis Scheme. IEEE Transactions on Industrial Electronics 63(2)/2016, 864–873.
  • [40] Kukrer O., Komurcugil H., and Doganalp A.: A three-level hysteresis function approach to the sliding-mode control of single-phase UPS inverters. IEEE Transactions on Industrial Electronics 56(9)/2009, 3477–3486.
  • [41] Li Z., Li Y., Wang P., Zhu H., Liu C., Xu W.: Control of three-phase boost-type PWM rectifier in stationary frame under unbalanced input voltage. IEEE Transactions on Power Electronics 25(10)/2010, 2521–2530.
  • [42] Lidozzi A., Lo Calzo G., Solero L., Crescimbini F.: Integral-resonant control for stand-alone voltage source inverters. IET Power Electronics 7(2)/2014, 271–278.
  • [43] Lidozzi A., Calzo G. Lo., Solero L., Crescimbini F.: Integral-Resonant Voltage Control for Three-Phase Four-Leg Voltage Source Inverters. 2012, 1412–1419.
  • [44] Lin C., Fu T.L.M.W.L., Hsiao C.: Design and implementation of a chatteringfree non-linear sliding-mode controller for interior permanent magnet synchronous drive systems. 6, December 2011, 2012, 332–344.
  • [45] Liserre M., Teodorescu R., Blaabjerg F.: Multiple harmonics control for threephase grid converter systems with the use of PI-RES current controller in a rotating frame. IEEE Transactions on Power Electronics 21, 3 (2006), 836–841.
  • [46] Liutanakul P., Pierfederici S., and Meibody-Tabar, F.: Nonlinear control techniques of a controllable rectifier/inverter-motor drive system with a small dc-link capacitor. Energy Conversion and Management 49(12)/2008, 3541–3549.
  • [47] Ma K., Chen W., Liserre M., Blaabjerg F.: Power controllability of a threephase converter with an unbalanced AC source. IEEE Transactions on Power Electronics 30(3)/2015, 1591–1604.
  • [48] Malesani L., Mattavelli P., Buso S.: Robust Dead-Beat Current Control for PWM Rectifiers and Active Filters. IEEE Trans. Ind. Appl. 35(3)/1999, 613–620.
  • [49] Malesani L., Tenti P. A: Novel Hysteresis Control Method for CurrentControlled Voltage-Source PWM Inverters with Constant Modulation Frequency. IEEE Transactions on Industry Applications 26(1)/1990, 88–92.
  • [50] Malinowski M., Jasinski M., Kazmierkowski M.P.: Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPCSVM). IEEE Transactions on Industrial Electronics 51(2)/2004, 447–454.
  • [51] Malinowski M., Kazmierkowski M.P., Hansen S., Blaabjerg F., Marques G.D.: Virtual-flux-based direct power control of three-phase PWM rectifiers. Industry Applications, IEEE Transactions on 37(4)/2001, 1019–1027.
  • [52] Malinowski M., Kazmierkowski M.P., Hansen S., Blaabjerg F., Marques G.D.: Virtual-flux-based direct power control of three-phase PWM rectifiers. IEEE Transactions on Industry Applications 37(4)/2001, 1019–1027.
  • [53] Mao H., Yang X., Chen Z., Wang Z.: A hysteresis current controller for singlephase three-level voltage source inverters. IEEE Transactions on Power Electronics 27(7)/2012, 3330–3339.
  • [54] Maswood A.I. Liu F.: A unity-power-factor converter using the synchronousreference-frame-based hysteresis current control. IEEE Transactions on Industry Applications 43(2)/2007, 593–599.
  • [55] Mcmurray W.: Modulation of the Chopping Frequency in DC Choppers and PWM Inverters Having Current-Hysteresis Controllers. IEEE Transactions on Industry Applications I, 4/1984, 763–768.
  • [56] Monfared M., Rastegar H.: Design and experimental verification of a dead beat power control strategy for low cost three phase PWM converters. International Journal of Electrical Power and Energy Systems 42(1)/2012, 418–425.
  • [57] Monfared M., Sanatkar M., Golestan S.: Direct active and reactive power control of single-phase grid-tie converters. IET Power Electronics 5(8)/2012, 1544.
  • [58] Montagner V.F., Jr L.A.M., Koch G.G., et al.: Partial state feedback controllers applied to grid-connected converters. 2, 3.
  • [59] Nagy I.: Novel Adaptive Tolerance Band Based PWM for Field-Oriented Control of Induction Machines. IEEE Transactions on Industrial Electronics 41(4)/1994, 406–417.
  • [60] Noguchi T., Tomiki H., Kondo, S., Takahashi I.: Direct power control of PWM converter without power-source voltage sensors. IEEE Transactions on Industry Applications 34(3)/1998, 473–479.
  • [61] Norniella J.G., Cano J.M., Orcajo G.A., et al.: Improving the dynamics of virtual-flux-based control of three-phase active rectifiers. IEEE Transactions on Industrial Electronics 61(1)/2014, 177–187.
  • [62] P, K. and Mahapatra, K.K.: PI and fuzzy logic controllers for shunt Active Power Filter--a report. ISA transactions 51(1)/2012, 163–9.
  • [63] Parvez M., Elias M.F.M., Rahim N.A., Osman N.: Current control techniques for three-phase grid interconnection of renewable power generation systems: A review. Solar Energy 135/2016, 29–42.
  • [64] Punitha K., Devaraj D., Sakthivel S.: Development and analysis of adaptive fuzzy controllers for photovoltaic system under varying atmospheric and partial shading condition. Applied Soft Computing Journal 13(11)/2013, 4320–4332.
  • [65] Rakhtala S.M. Shafiee Roudbari E.: Fuzzy PID control of a stand-alone system based on PEM fuel cell. International Journal of Electrical Power & Energy Systems 78/2016, 576–590.
  • [66] Razali A.M. Rahman M.A.: Virtual grid flux oriented control method for frontend three phase boost type voltage source rectifier. 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering: Vision for a Greener Future, CCECE 2012, 2012, 1–4.
  • [67] Rese L., Costa A.S., E Silva A.S.: Enhanced modeling and control of VSIs in microgrids operating in grid-connected mode. 2012 IEEE PES Innovative Smart Grid Technologies, ISGT 2012, 2012, 1–8.
  • [68] Rodriguez P., Pou J., Bergas J., Candela J.I., Burgos R.P., Boroyevich D.: Decoupled double synchronous reference frame PLL for power converters control. IEEE Transactions on Power Electronics 22(2)/2007, 584–592.
  • [69] Roslan N.F., Suul J.A., Luna A., Candela I., Rodriguez P. A: Simulation Study of Proportional Resonant Controller Based on the Implementation of FrequencyAdaptive Virtual Flux Estimation with the LCL Filter. 2015, 1934–1941.
  • [70] Scoltock J., Geyer T., Madawala U.K.: Model predictive direct power control for grid-connected NPC converters. IEEE Transactions on Industrial Electronics 62(9)/2015, 5319–5328.
  • [71] Scoltock J., Geyer T., Madawala U.K.A: Model Predictive Direct Current Control Strategy With Predictive References for MV Grid-Connected Converters With LCL Filters. IEEE Transactions on Power Electronics 30(10)/2015, 5926–5937.
  • [72] Sefa I., Altin N., Ozdemir S., Kaplan O.: Fuzzy PI controlled inverter for grid interactive renewable energy systems. IET Renewable Power Generation 9/2015, 729–738.
  • [73] Song H.S. Nam K.: Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electronics 46(5)/1999, 953–959.
  • [74] Tan S., Member S., Lai Y.M., et al.: A Fixed-Frequency Pulsewidth Modulation Based Quasi-Sliding-Mode Controller for Buck Converters. 20(6)/2005, 1379–1392.
  • [75] Timbus A., Liserre M., Teodorescu R., Rodriguez P., Blaabjerg F.: Evaluation of current controllers for distributed power generation systems. IEEE Transactions on Power Electronics 24(3)/2009, 654–664.
  • [76] Veena P., Indragandhi V., Jeyabharath R., Subramaniyaswamy V.: Review of grid integration schemes for renewable power generation system. Renewable and Sustainable Energy Reviews 34/2014, 628–641.
  • [77] Wai R., Member S., Lin C.: Active Low-Frequency Ripple Control for CleanEnergy Power-Conditioning Mechanism. IEEE Transactions on Industrial Electronics 57(11)/2010, 3780–3792.
  • [78] Wai R.J. Lin C.Y.: Dual active low-frequency ripple control for clean-energy power-conditioning mechanism. IEEE Transactions on Industrial Electronics 58(11)/2011, 5172–5185.
  • [79] Yamamoto Y.: Dead beat control of three phase PWM inverter - Power Electronics, IEEE Transactions on. 5(I)/1990, 21–28.
  • [80] Yin B., Oruganti R., Panda S.K., Bhat A.K.S.: An output-power-control strategy for a three-phase PWM rectifier under unbalanced supply conditions. IEEE Transactions on Industrial Electronics 55(5)/2008, 2140–2151.
  • [81] Zhang X., Wang Y., Yu C., Guo L., Cao R.: Hysteresis model predictive control for high-power grid-connected inverters with output LCL filter. IEEE Transactions on Industrial Electronics 63(1)/2016, 246–256.
  • [82] Zhang Y., Qu C.: Direct Power Control of a Pulse Width Modulation Rectifier Using Space Vector Modulation Under Unbalanced Grid Voltages. IEEE Transactions on Power Electronics 30(10)/2015, 5892–5901.
  • [83] Zieliński D., Jarzyna W., Lipnicki P.: Synchronization of voltage frequency converters with the grid in the presence of notching. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 34(3)/2015, 657–673.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6856730c-b467-472f-af90-cf52f65044b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.