Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The subject of the research described in the article are the sound insulating properties of a cube-shaped enclosures, the walls of which are made of plates of homogeneous materials and two-layer baffles. As an enclosure for an omnidirectional sound source imitating a noisy machine or device, a prototype test stand for testing the acoustic properties of materials and enclosures was used. The three tested variants were enclosures with walls made of plastic plates, such as polyethylene, solid polycarbonate, and plates in the form of rigid polyethylene foam. The fourth variant was an enclosure with walls made of sandwich baffles in the form of a steel plate with a rubber layer glued on. Calculations of the effectiveness of the enclosure were carried out using the previously developed theoretical calculation model for insertion loss (IL). The obtained results were related to the IL obtained in the course of experimental tests. The research showed slight discrepancies between the calculations and the measurement results for almost all tested materials in the entire frequency range (100-5000 Hz), with the exception of rigid polyethylene foam, for which the discrepancies were relatively the largest in the lower frequency range, i.e. below 400 Hz. Research has shown that the best sound insulation performance was achieved for an enclosure with two-layer walls.
Czasopismo
Rocznik
Tom
Strony
art. no. 2024212
Opis fizyczny
Bibliogr. 20 poz., fot. kolor., wykr.
Twórcy
autor
- AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków
Bibliografia
- 1. I.L. Ver, L.L. Beranek; Noise and vibration control engineering - principles and applications; John Wiley & Sons, Inc, Hoboken; New Jersey, 2006
- 2. D.A. Bies, C.H. Hansen; Engineering noise control, theory and practice; Spon Press, London and New York, 2009
- 3. R.F. Barron; Industrial noise control and acoustics; M. Dekker, Ed.; New York, 2003
- 4. F. Fahy; Foundations of engineering acoustics; Academic Press, San Diego, 2003
- 5. DJ. Oldham, SN. Hillarby; The acoustical performance of small close fitting enclosure, part 1: Theoretical models; J. Sound Vib., 1991, 150(2), 261-281
- 6. D.J. Oldham, S.N. Hillarby; The acoustical performance of small close fitting enclosure, part 2: Experimental investigation; J. Sound Vib., 1991, 150(2), 283-300
- 7. M. Pawelczyk, S. Wrona; Noise-controlling casings; CRC Press, Boca Raton, London, New York, 2022
- 8. H.S. Kim, at al.; A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method; Int. J. Nav. Arch. Ocean, 2014, 6(4), 894-903; DOI: 10.2478/IJNAOE-2013-0220
- 9. S. Wrona, M. de Diego, M. Pawelczyk; Shaping zones of quiet in a large enclosure generated by an active noise control system; Control Engineering Practice, 2018, 80, 1-16; DOI: 10.1016/j.conengprac.2018.08.004
- 10. P. Nieradka, A. Dobrucki; Insertion loss of enclosures with lined slits; Proceedings of the 11th European Congress and Exposition on Noise Control Engineering Euronoise Conference, Crete, Greece, 2018, 893-898
- 11. K. Kosała; Experimental tests and prediction of insertion loss for cubical sound insulating enclosures with single homogeneous walls; Appl. Acoust., 2022, 197, 108956
- 12. K. Kosała, L. Majkut, R. Olszewski; Experimental study and prediction of insertion loss of acoustical enclosures; Vibrations in Physical Systems, 2020, 31(2), 1-8
- 13. K Kosała, L. Majkut, R. Olszewski, A. Flach; Laboratory tests of the prototype stand to determine the acoustic properties of materials used in noise protection (in Polish); Technologie XXI wieku - aktualne problem i nowe wyzwania, Tom1, Lublin, Wydawnictwo Naukowe TYGIEL, 2020, 7-20
- 14. EN ISO 3746:2010; Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Survey method using and enveloping measurement surface over a reflecting plane; 2010
- 15. ISO 3745; Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods for anechoic rooms and hemi-anechoic rooms. In: International organization for standardization; 2012
- 16. EN ISO 717-1; Acoustics - Rating of sound insulation in buildings and o building elements - Part 1: Airborne sound insulation. In: International organization for standardization; 2020
- 17. J.L. Davy; Predicting the sound insulation of single leaf walls - extension of Cremer’s model; J. Acoust. Soc. Am., 2009, 126(4), 1871-7; DOI: 10.1121/1.3206582
- 18. B.H. Sharp; A study of techniques to increase the sound insulation of building elements; US Departement of Commerce; Washington: National Technical Information Service, 1973
- 19. K. Kosała; Calculation models of analysing the sound insulating properties of homogeneous single baffles used in vibroacoustic protection; Appl. Acoust. 2019, 146, 108-117; DOI: 10.1016/j.apacoust.2018.11.012
- 20. K. Kosała; Sound insulation properties of two-layer baffles used in vibroacoustic protection; Appl. Acoust., 2019, 156, 297-305; DOI: 10.1016/j.apacoust.2019.07.028
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-685238a0-38e0-4abc-adbd-90147391f0ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.