Anna CZERNIECKA, Iwona ZARZYKA*, Barbara PILCH-PITERA, Marek PYDA Politechnika Rzeszowska im. Ignacego Łukasiewicza, Wydział Chemiczny Rzeszów

* e-mail: izarzyka@prz.edu.pl

Właściwości termiczne kompozytów otrzymanych z udziałem glinki organicznej poli(kwasu 3-hydroksymasłowego)

Streszczenie. W niniejszej pracy otrzymano nanokompozyty z poli(kwasu 3-hydroksy-masłowego) i glinki organicznej typu Cloisite® 30B przy użyciu wytłaczarki dwuślimakowej. Nowy materiał otrzymano poprzez mieszanie bezpośrednie. Metodą dyfrakcji rentgenowskiej potwierdzono nanostrukturę uzyskanego kompozytu, a za pomocą metod analizy termicznej badano wpływ zawartości nanonapełniacza na termiczne właściwości otrzymanych kompozytów. W zależności od ilości wprowadzonego napełniacza (1–3 % mas.) uzyskano nanokompozyty o przewadze struktury interkalowanej lub mieszanej.

THERMAL PROPERTIES OF COMPOSITES OBTAINED FROM ORGANIC CLAY AND POLY(3-HYD-ROXYBUTYRATE) MATRIX

Summary. In this paper, nanocomposites from poly(3-hydroxybutyrate) and organic clay Cloisite®30B were obtained with the use of a twin-screw extruder. New materials were produced by the direct mixing of the nanofiller with the molten polymer mass. The nanostructure was identified by the X-ray diffraction method (XRD). The thermal properties were investigated using the thermal analysis methods, and the influence of the nanofiller presence on the thermal properties of poly(3-hydroxybutyrate) was determined. The intercalated or mixed nanocomposites were obtained, in dependence on the quantity of the introduced nanofiller (1, 2 or 3 wt.-%).

1. WSTĘP

Ostatnio dużą uwagę przyciągają polimery biodegradowalne i biokompatybilne. W związku z faktem, że są one przyjazne dla środowiska wykorzystuje się je często w zastosowaniach biomedycznych, jak również do produkcji opakowań jednorazowych czy w rolnictwie. Z tego powodu, tak istotne jest prowadzenie badań mających na celu poprawę właściwości użytkowych polimerów przy jednoczesnej poprawie ich stopnia biodegradacji.

Poli(kwas 3-hydroksymasłowy) (P3HB) jest również całkowicie biodegradowalnym, termoplastycznym poliestrem alifatycznym, wytwarzanym przez wiele rozmaitych bakterii z tanich surowców odnawialnych. Właściwości fizyczne i mechaniczne P3HB są porównywalne z właściwościami izotaktycznego polipropylenu [1], co czyni P3HB bardzo atrakcyjnym materiałem. Ma on jednak pewne wady, takie jak sztywność, kruchość, a przede wszystkim niską stabilność termiczną, nieznacznie tylko wyższą od jego temperatury topnienia, co ogranicza wykorzystanie P3HB w szerszym zakresie komercyjnym [2]. Dlatego tak ważne jest zwiększenie stabilności termicznej P3HB. Jednym ze sposobów może być wytwarzanie nanokompozytów z udziałem tego polimeru. Nanokompozyty polimerowe są powszechnie wytwarzane poprzez połączenie osnowy polimerowej z napełniaczem. Istotne jest, aby jeden ze składników posiadał, co najmniej jeden wymiar (tj. długość, szerokość lub grubość) w skali nanometrycznej (1 do kilkuset nanometrów). Nanobiokompozyty są bardzo obiecującymi materiałami, ponieważ wykazują lepsze właściwości przy jednoczesnym zachowaniu biodegradowalności materiału oraz jego ekonietoksyczności [3].

Wykazano, że dodatek kilku procent nanonapełniacza (zwykle od 1 do 5% mas.) skutkuje otrzymaniem nanokompozytów o lepszych właściwościach termicznych oraz mechanicznych, tzn. lepszych parametrach barierowych, poniżej których obserwuje się wyraźną zmianę właściwości, w stosunku do wyjściowego polimeru [4-6]. Komercyjnie, najważniejszym rodzajem nanokompozytów polimerowych są te produkowane z udziałem mineralnych glinek warstwowych (glinokrzemianów warstwowych), a zwłaszcza montmorylonitu, który jest materiałem naturalnym, ekonomicznym i przyjaznym dla środowiska. Jest on zwykle modyfikowany chemicznie poprzez wymianę kationową, polegającą na wymianie jonów sodowych na odpowiednie jony organiczne zwykle alkiloamoniowe. Proces ten ma na celu zmniejszenie hydrofilowości montmorylonitu i zapewnienie jego kompatybilności z osnową polimerową, co jest podstawą pomyślnego wytwarzania nanokompozytów polimerowych.

W niniejszej pracy otrzymano nanokompozyty poli(kwasu 3-hydroksymasłowego) i glinki organicznej typu Cloisite® 30B przy użyciu wytłaczarki dwuślimakowej. Za pomocą dyfrakcji rentgenowskiej zbadano strukturę nanokompozytu, a za pomocą metod analizy termicznej badano wpływ zawartości nanonapełniacza na termiczne właściwości otrzymanych kompozytów.

2. CZĘŚĆ DOŚWIADCZALNA

2.1. Otrzymywanie kompozytów

Do otrzymywania nanokompozytów użyto współbieżną wytłaczarkę dwuślimakową firmy ZAMAK, o średnicy ślimaka 12,5 mm; stosunek L/D wynosił 24. Wytłaczarka jest wyposażona w cztery temperaturowo kontrolowane strefy, które nastawiano w zakresie od 150 do 185°C. Szybkość ślimaka utrzymywano w zakresie 20-50 obr./min. Przed procesem wytłaczania, nanonapełniacz był dyspergowany w wodzie za pomocą płuczki ultradźwiękowej przy częstotliwości 37 Hz w czasie 30 minut. Zdyspergowany napełniacz Cloisite® 30B oraz P3HB suszono w temperaturze 50°C w suszarce próżniowej przez 12 godz. Do matrycy polimerowej wprowadzano 1, 2 lub 3% mas. Cloisite® 30B. Mieszaninę P3HB i nanonapełniacza homogenizowano mechanicznie i wprowadzano do wytłaczarki.

2.2. Metody badawcze

Pomiary SAXS przeprowadzano w trybie transmisyjnym w zakresie 0-5° w czasie 2 godz. Dyfraktometr NA-NOSTAR-U wyposażony jest w goniometr niskokątowy z lampą miedziową (promieniowanie o długości 1,54 Å) pracujący przy 50 kV i 0,6 mA. Optyka przyrządu (skrzyżowane lustra Goebla) pozwala na otrzymanie wiązki równoległej o średnicy 500 mikronów. System szczelin umożliwia rejestrację ugiętej wiązki przy kącie dywergencji mniejszym niż 0,05.

Analizę TEM przeprowadzono w mikroskopie Tecnai G12 Spirit-Twin (źródło LaB6) wyposażonym w kamerę CCD FEI Eagle 4k, działającym przy napięciu przyspieszania 120 kV. Przed przystąpieniem do analizy, próbki umieszczano na siatkach miedzianych 300 mesh.

Badania termiczne osnowy – P3HB, a także uzyskanych na jej osnowie kompozytów oraz Cloisite® 30B badano z użyciem mikrotermograwimetru TGA/SDTA 851e firmy Mettler Toledo. Próbki o masie ±0,002 g umieszczano w tyglu ceramicznym, ważono z dokładnością do 0,000001 g i umieszczono w komorze pomiarowej. Rejestracji wyników dokonywano w następujących warunkach: zakres temperatury 20-800°C, szybkość ogrzewania 10°C/min, masa próbki 2-10 mg, atmosfera argonu. Wyniki rejestrowano w postaci krzywych TG.

Badania kalorymetryczne przeprowadzono przy użyciu różnicowego kalorymetru skaningowego firmy TA Instruments DSC Q1000. Zastosowanym systemem chłodzącym była chłodziarka zewnętrzna. Wszystkie analizy przeprowadzano w atmosferze azotu, którego przepływ był stały i wynosił 50 ml/min. Pomiary zostały przeprowadzone w zakresie temperatury 183-468 K. Badania DSC przeprowadzano przy stałej szybkości ogrzewania próbki (q = 10 K/min), z różnymi wartościami szybkości chłodzenia w zakresie 1-50 K/min. W wyniku pomiaru metodą DSC otrzymano termogramy, które przedstawiają zależność strumienia ciepła lub ciepła właściwego w funkcji czasu lub temperatury.

Każdy przeprowadzony pomiar ciepła właściwego przy użyciu DSC został skalibrowany z wykorzystaniem ciepła właściwego szafiru (Al₂O₃). Kalibracja temperatury i strumienia ciepła w aparatach DSC została przeprowadzona w odniesieniu do parametrów topnienia indu, tj. początkowej temperatury topnienia, tzw. "onset": T_m (onset) = 429,75 K i entalpii topnienia $\Delta H_f = 28,45$ J/g (3,281 kJ/mol).

Skalibrowane wyniki ciepła właściwego otrzymano na podstawie trzech pomiarów: pierwszy, z pustym tyglem odniesienia i pustym tyglem próbki, był wykonany w celu uwzględnienia (poprawienia) "asymetrii komory" aparatu DSC, drugi pomiar z pustym tyglem odniesienia i tyglem napełnionym szafirem przeprowadzono w celu kalibracji ciepła właściwego, natomiast trzeci pomiar był wykonany z pustym tyglem odniesienia i tyglem napełnionym badanym materiałem. Na tej podstawie została wyznaczona stała kalibracji [7]. Uwzględnione w analizie wyniki pomiarów ciepła właściwego pochodziły z ogrzewania próbki w drugim przebiegu po wcześniejszym, kontrolowanym chłodzeniu. Dokładność przeprowadzonych pomiarów została oszacowana na poziomie ±3% albo lepszym.

3. DYSKUSJA WYNIKÓW

3.1. Analiza struktury

Nanokompozyt polimerowy z udziałem poli(kwasu3-hydroksymasłowego) oraz nanoglinki organicznej Cloisite® 30B wytworzono poprzez mieszanie bezpośrednie, z wykorzystaniem wytłaczarki dwuślimakowej. Nanostruktury uzyskanych kompozytów potwierdzono poprzez zastosowanie dyfrakcji rentgenograficznej (XRD) i transmisyjnej mikroskopii elektronowej (TEM). Rysunek 1 przedstawia dyfraktogramy SAXS nanokompozytów zawierających 1, 2, 3 % mas. glinki, oznaczonych odpowiednio P3HB1, P3HB2, P3HB3. Dla porównania przedstawiono również dyfraktogramy z nienapełnionym P3HB i Cloisite®30B.

Nienapełnione próbki P3HB wykazują typowe rozproszenie tła w badanym zakresie. Cloisite®30B został scharakteryzowany przez pojedynczy pik dyfrakcyjny przy 20 = 4,92°. Pik ten przesuwa się w stronę niższych wartości kąta 20 (≤ 1,2°), po zmieszaniu P3HB z glinką. Przesunięcie jest tym większe, im mniejsza zawartość glinki w uzyskanym kompozycie. Zmniejszenie się kąta dyfrakcji oznacza, że makrocząsteczki P3HB weszły pomiędzy warstwy krzemianowe i odległości międzywarstwowe uległy zwiększeniu. Dzięki zastosowaniu prawa Bragga (λ =2d·sinθ), było możliwe obliczenie wartości odległości międzywarstwowych (d₀₀₁). Wynoszą one odpowiednio 1,8 i 6,8 nm dla nanonapełniacza i nanokompozytu P3HB3. Wynika stąd, że odległość międzywarstwo wa d₀₀₁ wzrosła o 5 nm.

Obecność piku przy kącie 20 równym ok. 0,9° na dyfraktogramach kompozytów zawierających 1% (P3HB1) i 2% mas. (P3HB2) nanoglinki wskazuje na jej dobrą dyspersję uzyskaną przez interkalację taktoidów, a następnie rozwarstwianie nanopłytek w matrycy P3HB (dla P3HB2 i P3HB1 odległość międzywarstwowa wynosi odpowiednio 7,6 i 8,4 nm). Na dyfraktogramach otrzymanych kompozytów obserwuje się również drugi pik dyfrakcyjny, o niewielkim natężeniu, pochodzący od odbicia drugiego rzędu – d_{002} , przy wartości kąta 20 równej 2,33°, co potwierdza ich interkalowaną strukturę.

Z analizy dyfraktogramów wynika, że uzyskano nanokompozyty z przewagą interkalowanej struktury, jednak znaczny spadek intensywności pików potwier-

Cloisite®30B

Rys. 1. Dyfraktogramy SAXS: matrycy – P3HB, Cloisite®30B i nanokompozytów zawierających 1, 2 i 3% mas. glinki (oznaczonych odpowiednio P3HB1, P3HB2, P3HB3)

20 [°]

P3HB

dzających interkalację (Rys. 1, P3HB1 i P3HB2) może wskazywać na powstawanie struktury nieuporządkowanej i/lub eksfoliowanej.

P3HB2

P3HB3

Struktura nanokompozytów P3HB była obserwowana również przy użyciu TEM. Przy małym powiększeniu, obraz wykazuje raczej równomierne rozproszenie krzemianów warstwowych, nawet jeśli niektóre małe taktoidy są nadal obecne.

3.2. Analiza termiczna

W celu obserwacji zmian fizykochemicznych zachodzących pod wpływem temperatury przeprowadzono analizę termograwimetryczną (Rys. 2), która pozwoliła na zbadanie trwałości otrzymanych kompozytów.

Analiza TGA uzyskanych nanokompozytów wykazała, że termogram P3HB i kompozytu zawierającego

Rys. 2. Analiza TGA: osnowy P3HB, Cloisite®30B oraz nanokompozytów zawierających 1, 2 i 3% mas. glinki (oznaczonych odpowiednio P3HB1, P3HB2, P3HB3)

1 % mas. Cloisite®30B w zasadzie się pokrywają. Dalszy wzrost ilości dodawanej glinki powoduje niewielkie obniżanie się ich termoodporności w stosunku do odporności termicznej samej matrycy polimerowej (Rys. 2). Wynika to z faktu, że termoodporność Cloisite®30B jest nieco mniejsza niż samego P3HB. 1% ubytek masy nanoglinki organicznej następuje w temperaturze 220°C, a matrycy w 264°C.

W celu obserwacji zmian właściwości termicznych uzyskanych kompozytów przeprowadzono badania za pomocą standardowej, różnicowej kalorymetrii skaningowej (DSC). Zbadano wpływ nanonapełniacza na temperaturę przejścia szklistego (T_g) i topnienia, a także na zmianę entalpii przejścia fazowego oraz ciepła właściwego w T_g . Rysunek 3 przedstawia termogramy matrycy polimerowej, jak również jej kompozytów o różnej zawartości nanonapełniacza.

Rys. 3. Termogramy DSC: matrycy P3HB oraz nanokompozytów zawierających 1, 2 i 3% mas. glinki (oznaczonych odpowiednio P3HB1, P3HB2, P3HB3)

2400

1800 2100

8

P3HB1

Zależność strumienia ciepła od temperatury, dla każdej z prezentowanych próbek, została otrzymana podczas ogrzewania z szybkością 10 °C/min, po ich uprzednim schłodzeniu w sposób kontrolowany z szybkością 10 °C/min. Na podstawie jakościowej analizy zmian ciepła właściwego semikrystalicznych próbek P3HB i jego kompozytów, przedstawionych na rysunku 3, oszacowano parametry przejść fazowych, które zestawiono w tabeli 1.

Tabela 1. Charakterystyka właściwości termicznych P3HB oraz jego kompozytów (P3HB1, P3HB2, P3HB3)

Rodzaj kompozytu	T _g [°C]	$\Delta C_{p} \left[J \cdot g^{-1} \cdot {}^{\circ}C^{-1} \right]$	T _m [°C]	$\Delta H_{\rm f}\left[J{\cdot}g^{{\scriptscriptstyle -}1}\right]$
P3HB3	7,08	0,1525	158,03	93,80
P3HB2	6,13	0,1543	161,47	93,60
P3HB1	4,59	0,1544	161,86	93,29
РЗНВ	4,59	0,1948	164,32	88,47

Na rysunku 4 przedstawiono zależność zmian ciepła właściwego w T_g mobilnej fazy amorficznej w funkcji entalpii przejścia fazowego ΔH_f semikrystalicznych próbek P3HB3 o różnej historii termicznej.

Na rysunku 4 i 5 została przedstawiona przykładowa analiza nanokompozytu zawierającego 3% glinki. Zaobserwowano odchylenie danych eksperymentalnych otrzymanych z jakościowej analizy termicznej, od liniowej zależności ΔC_p w funkcji ΔH_{tr} co sugeruje istnienie układu trójfazowego w polimerze, tj. obecność fazy krystalicznej (W_c), amorficznej (W_a) oraz sztywnej fazy amorficznej. Kolorem czerwonym został przedstawiony punkt, który otrzymano na podstawie analizy próbki P3HB3 z rysunku 3.

Dane eksperymentalne ΔC_p i $\Delta H_f z$ rysunku 4 zostały wykorzystane do obliczenia zależności $W_a=f(W_c)$ zgodnie

Rys. 4. Zależność zmian ciepła właściwego w temperaturze przejścia szklistego w funkcji ciepła topnienia semikrystalicznegoP3HB oraz jego nanokompozytów zawierających 1, 2 i 3% mas. glinki (oznaczonych odpowiednio P3HB1, P3HB2, P3HB3)

Rys. 5. Zależność stopnia amorficzności w funkcji stopnia krystaliczności semikrystalicznych próbek P3HB oraz jego nanokompozytów zawierających 1, 2 i 3% mas. glinki (oznaczonych odpowiednio P3HB1, P3HB2, P3HB3)

z równaniami 1 i 2, co przedstawiono na rysunku 5. Prezentowana zależność przedstawia graficznie skład fazowy wszystkich badanych próbek nanokompozytu P3HB3 o różnej historii termicznej. Wyznaczono, że ciepło właściwe materiału całkowicie amorficznego wynosi 0,44 J·g^{-1.}°C⁻¹, natomiast entalpia topnienia materiału całkowicie krystalicznego wynosi 143 J·g⁻¹. Obliczono, że próbka P3HB3 pozostaje w układzie dwufazowym, co potwierdzono na rysunku 5 (próbka nie wykazuje odchylenia od linii prostej). Jak zobrazowano na rysunku 5, P3HB3 zawiera 35% fazy amorficznej i 65% fazy krystalicznej:

$$W_a = \frac{\Delta C_p}{\Delta C_p (100\%)} = \frac{0.1525}{0.44} \cdot 100\% = 35\%$$
(1)

gdzie: ΔC_p – zmiana ciepła właściwego w temperaturze zeszklenia w polimerze semikrystalicznym, $\Delta C_p(100\%)$ – różnica ciepła właściwego w T_g w polimerze całkowicie amorficznym,

$$N_c = \frac{\Delta H_f}{\Delta H_f (100\%)} = \frac{93.8}{143} \cdot 100\% = 65\%$$
(2)

 ΔH_f – entalpia topnienia badanego materiału, $\Delta H_f(100\%)$ – entalpia topnienia polimeru całkowicie krystalicznego.

I

4. WNIOSKI

W wyniku wytłaczania poli(kwasu 3-hydroksymasłowego) i glinki organicznej CLOISITE®30B z użyciem wytłaczarki dwuślimakowej otrzymano nanokompozyty o strukturze interkalowanej i/lub mieszanej, w zależności od ilości wprowadzonego nanonapełniacza.

Zbadano również właściwości termiczne otrzymanych nanokompozytów, scharakteryzowano strukturę oraz określono skład fazowy przykładowej próbki o największej ilości napełniacza.

Stwierdzono, że uzyskane nanokompozyty charakteryzują się obniżoną termoodpornością w porównaniu do samego poli(kwasu 3-hydroksymasłowego), lecz jednocześnie obniżeniu ulega temperatura topnienia polimeru, co rozwiązuje problem nakładającej się temperatury topnienia i degradacji, znacznie ułatwiając przetwórstwo.

PODZIĘKOWANIA

Analiza SAXS została wykonana w Wydziałowym Laboratorium Spektrometrii (Wydział Chemiczny, Politechnika Rzeszowska) i była finansowana z budżetu DS.

BIBLIOGRAFIA

[1] Fernandes E. G., Pietrini M., Chiellini E., *Macrom. Symp.* 2004, nr 218, s.157-164.

- [2] Lee S. N., Lee M.Y., Park W.H., J. Appl. Polym. Sci. 2002, nr 83, s. 2945-2952.
- [3] Bordes P., Pollet E., Averous L., Prog. Polym. Sci. 2009, nr 34, s. 125-155.
- [4] Achilias D. S., Karabela M. M., Sideridou I. D., *Thermochim. Acta* 2008, nr 472, s.74-83.
- [5] Leszczyńska A., Njuguna J., Pielichowski K., Banerjee J., *Thermochim. Acta* 2007, nr 453, s. 75-96.
- [6] Pagacz J., Pielichowski K., J. Vinyl Addit. Technol. 2009, nr 15, s. 61-76.
- [7] Wunderlich B., Thermal Analysis of Polymeric Materials, SPRING, Verlag, Berlin, 2005.