PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

AC Voltage Transforming Circuits in Power Systems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Układy transformowania napięć przemiennych w systemach elektroenergetycznych
Języki publikacji
EN
Abstrakty
EN
The paper deals with AC voltage transforming circuits applied in power systems. It includes a general description of AC power systems, single and three-phase AC converters, especially PWM AC line choppers and a description of their implementation in AC transmission or distribution systems. This includes a description of the topologies, the operation and test results of the voltage sag/swell compensators, quadrature phase shifters, power flow controllers, static VAr compensators and Interfaces of renewable energy sources.
PL
Artykuł dotyczy układów transformujących napięcia przemienne stosowanych w systemach elektroenergetycznych. Ujęto w nim opis ogólny systemów elektroenergetycznych, jedno- i trójfazowych przekształtników prądu przemiennego, a zwłaszcza impulsowych sterowników prądu przemiennego oraz opis ich implementacji w systemach elektroenergetycznych transmisyjnych i dystrybucyjnych. Obejmują one opis topologii działania oraz wyniki badań kompensatorów załamań/wzrostów napięcia przemiennego, kwadraturowe przesuwników fazowych, szeregowych sterowników mocy czynnej, kompensatorów mocy przesunięcia oraz sprzęgi z odnawialnymi źródłami energii.
Rocznik
Strony
8--17
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • University of Zielona Góra, Institute of Electrical Engineering, ul Podgórna 50 65-246 Zielona Góra
autor
  • University of Zielona Góra, Institute of Electrical Engineering, ul Podgórna 50 65-246 Zielona Góra
  • University of Zielona Góra, Institute of Electrical Engineering, ul Podgórna 50 65-246 Zielona Góra
Bibliografia
  • [1] Sivanagaraju S., Electric Power Transmission and Distribution, Pearson Education India, 2008,.
  • [2] Milanowić J., Hiskansen I., Effect of load dynamics on power system damping, IEEE Trans. on Power System, vol. 10, No. 2, pp. 1022–1028, May 1995
  • [3] Liserre M., Sauter T. and Hung J. Y., Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics, IEEE Ind. Electron. Magazine, vol. 4, pp. 18-37, March 2010
  • [4] Brumsickle W. E., Schneider R. S., Luckjiff G. A., Divan D. M., McGranaghan M. F., Dynamic Sag Correctors: Cost-Effective Industrial Power Line Conditioning, IEEE Trans. on Ind. Applications, vol. 37, Jan./Feb 2001
  • [5] Bollen, M. and Zang, L., Analysis of voltage tolerance of ac adjustable – speed drives for three phase balanced and unbalanced sags, IEEE Trans. on Ind. Applications, vol. 36 No.3, pp. 904-910, May/June 2000
  • [6] Bhattacharyya S., Cobben S., Consequences of Poor Power Quality – An Overview, in Power Quality, edited by Mr Andreas Eberhard, InTech, 362 p., April, 2011
  • [7] Hingorani N. G., Gyugyi L., Understanding FACTS : Concepts and Technology of Flexible AC Transmission Systems,. New York: IEEE Press, 2000
  • [8] Ghosh A., Ledwich G., Power Quality Enhancement Using Custom Power Devices, Springer Science+Business Media New York, 2002
  • [9] Gupt S., Dixit A., Mishra N., Singh S.P., Custom Power Devices for Power Quality Improvement: A Review, International Journal of Research in Engineering & Applied Sciences, Volume 2, Issue 2, February 2012, pp. 1646–1659
  • [10] Molinas M., The role of power electronics in distributed energy systems, in Proc. Symposium on Distributed Energy Systems, Tokyo, Japan, Dec. 2008
  • [11] Kroposki B., Pink C., DeBlasio R., Thomas H., Simões M., Sen P. K., Benefits of power electronic interfaces for distributed energy systems, IEEE Trans. Energy Conversion, vol. 25, no. 3, pp. 901–908, Sept. 2010
  • [12] Blaabjerg F, Chen Z., Kjaer S. B., Power electronics as efficient interface in dispersed power generation systems, IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1184–1194, Sept. 2004.
  • [13] Kaniewski J, Analysis and study of properties of the hybrid transformers, Ph.D. dissertation, University of Zielona Góra Press, Zielona Góra 2011. (In Polish)
  • [14] Bashi S.M., Microcontroller-based Fast On-Load Semiconductor Tap Changer for Small Power Transformer, Journal of Applied Sciences 5 (6), pp. 999–1003, 2005
  • [15] Fedyczak Z.: PWM AC voltage transforming circuits, University of Zielona Góra Press, Zielona Góra 2003. (In Polish)
  • [16] Yorino N., Danyoshi M., Kitagawa M., Interaction among multiple controls in tap change under load transformers, IEEE Trans. on Power System, vol. 12, pp. 430-436, Feb. 1997
  • [17] Wu Q., Popović D.H., Hill D.J., Avoiding sustained oscillations in power systems with tap changing transformers, Elsevier, Electrical Power and Energy Systems, No 22, pp 597–605, 2000
  • [18] Nielsen J. G., Newman M., Nielsen H., Blaabjerg F., Control and testing of a Dynamic Voltage Restorer (DVR) at medium voltage level, IEEE Trans. on Power Electronics, vol.19, pp. 806–813, May 2004
  • [19] Omar R., Rahim N.A., Voltage unbalanced compensation using dynamic voltage restorer based on supercapacitor, Electrical Power and Energy Systems 43, 2012, pp. 573–581
  • [20] Jain A., Joshi K., Behal A., Mohan N, Voltage Regulation With STATCOMs: Modeling, Control and Results, IEEE Transactions on Power Deliver, Vol. 21, No. 2, pp. 726-735April 2006
  • [21] Sen K. K., Stacey E. J., UPFC – Unified Power Flow Controller: Theory, Modeling, and Applications, IEEE Transactions on Power Deliver, Vol. 13, No. 4, October 1998, pp. 1453-1460
  • [22] Lee Tzung-Lin, Hu Shang-Hung, Chan Yu-Hung, D-STATCOM With Positive-Sequence Admittance and Negative-Sequence Conductance to Mitigate Voltage Fluctuations in High-Level Penetration of Distributed-Generation Systems, IEEE Transactions on Industrial Electronics, Vol. 60, No. 4, April 2013
  • [23] Benslimante T., Aliouane K., Chetate B., Voltage and Current Disturbances Elimination with Reactive Power Compensation Using Unified Power Quality Conditioner, in Proc. SPEEDAM 2009, Taormina , 23-26 May 2006, pp. 780 – 784
  • [24] Subramanian S., Mishra M. K., Interphase AC-AC topology for voltage sag supporter, IEEE Tran. on Power Elec, vol. 25, No. 2, Feb. 2010, pp. 514-518
  • [25] Babaei E., Kangarlu M. F., Sabahi M., Compensation of voltage disturbances in distribution systems using single-phase dynamic voltage restorer, Electric Power Systems Research, 80 (2010), pp. 1413–1420
  • [26] Babaei E., Kangarlu M. F., Cross-phase voltage sag compensator for three-phase distribution systems, Electrical Power and Energy Systems 51 (2013), pp.119–126
  • [27] Jothibasu S., Mishra M. K., An improved direct AC-AC converter for voltage sag mitigation, IEEE Trans. on Ind. Electronics, vol. 62, No. 1, pp. 21-29 January 2015
  • [28] Lefeuvre E., Meyenard T., Viarouge P., Fast Line Voltage Conditioners using a PWM AC Chopper Topology, In Proc. EPE, Graz 2001
  • [29] Aeoliza E. C., Enjeti N. P., Moran L. A., Montero-Hernandez O. C., Sangsun K., Analysis and Design of a Novel Voltage Sag Compensator for Critical Loads in Electrical Power Distribution Systems, IEEE Trans. on Ind. Appl., vol. 39, no. 4, July/Aug. 2003.
  • [30] Lee Dong-Myung, Habetler T. G., Harley R. G., Roston J., Keister T., A Voltage Sag Supporter Utilizing a PWM-Switched Autotransformer, IEEE Trans. on Power Electr., vol. 22, no. 2 March 2007.
  • [31] Ryoo H. J., Kim J.S., Rim G.H., Series Compensated Stepdown AC Voltage Regulator using AC Chopper with Transformer, KIEE International Transactions on Electrical Machinery and Energy Conversion Systems, vol. 5-B, no. 3, pp. 277-282, 2005
  • [32] . Kaniewski, Z. Fedyczak, and G. Benysek, AC Voltage Sag/Swell Compensator Based on Three-Phase Hybrid Transformer With Buck- Boost Matrix-Reactance Chopper, IEEE Trans. Ind. Electron., vol.61, no.8, pp. 3835-3846, Aug. 2014.
  • [33] Kaniewski J., Modeling and analysis of three-phase hybrid transformer using buck-boost MRC, in Proc. Compatibility and Power Electronics - CPE 2011 7th international conferenceworkshop, Tallinn, Estonia, 2011, pp. 202-207
  • [34] Kaniewski J., Fedyczak Z., Szcześniak P., Three-phase hybrid transformer using matrix-chopper as an interface between two AC voltage sources, Archives of Electrical Engineering, vol. 63(2), pp. 197-210 (2014)
  • [35] Lopez L. A. C., Joos G., Ooi B-T., A PWM quadrature-booster phase shifter for AC power transmission, IEEE Trans. on Power Electronics, Vol. 12, No. 1, pp. 138 – 143, Jan. 1997
  • [36] Kaniewski J., Fedyczak Z., Modelling and Analysis of a Three-Phase Quadrature Phase Shifter with a Hybrid Transformer, Electrical Review, No 11, pp. 269-274, 2008
  • [37] Monteiro J., Fernando Silva J., Pinto S. F., Palma J., Linear and Sliding-Mode Control Design for Matrix Converter-Based Unified Power Flow Controllers, IEEE Trans. on Power Electronics, Vol. 29, No. 7, JULY 2014
  • [38] Kaniewski J., “Three-Phase voltage sag/swell compensator with phase shifter function based on bipolar matrix-reactance chopper,” in Proc. of Power Electronics, Electrical Drives, Automation and Motion - SPEEDAM 2014: International Symposium. Ischia, Włochy, 2014 pp. 631-636
  • [39] Szcześniak P., Kaniewski J., A voltage regulator/conditioner based on a hybrid transformer with matrix converter, in Proc. of 40th Annual Conference of the IEEE Industrial Electronics Society - IECON 2014. Dallas, USA, 2014, pp. 3292-3297
  • [40] Fedyczak Z., Strzelecki R., Kasperek R., Skórski K.: Three-Phase Self-Commutated Static VAr Compensator Based on Ćuk Converter Topology, PESC 2000, Conference Proceedings, Galway, 2000 .- Vol. 1, p. 494-499
  • [41] Szcześniak P., Matrix Converter Interfaces Two Three-Phase AC Systems as a Component of Smart-Grid, in Proc. of Power Electronics, Electrical Drives, Automation and Motion - SPEEDAM 2014: International Symposium, Ischia, Włochy, 2014, pp. 676-681
  • [42] Szcześniak P, Kaniewski J, Jarnut M, AC-AC power electronic converters without DC energy storage: a review, Energy Conversion and Management, 92 (2015) 483-497
  • [43] Benysek G, Strzelecki R, Modern power-electronics installations in the Polish electrical power network. Renewable and Sustainable Energy Reviews, 15 (2011) 236–251.
  • [44] Blaabjerg F., Teodorescu R., Liserre M., Timbus A.V., Overview of control and grid synchronization for distributed power generation systems, IEEE Trans. Ind. Electron., 53(5), 1398–1409, (2006).
  • [45] Cichowski A., Banach P., Śleszyński W., Nieznański J.: Comprehensive distortion compensation of grid-connected inverter currents, 40 Annual Conference of the IEEE Industrial Electronics Society IECON 2014, Dallas, (2014) 1331-1336.
  • [46] Szcześniak P, Fedyczak Z, Application of the matrix converter to power flow control, Archives of Electrical Engineering, 63 (3) (2014) 409–422.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-684eff0f-e05a-4bfa-966e-9bc4a2ab995b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.