PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Correlation between Solidification Rates, Microstructure Integrity and Tensile Plastic Behaviour in 4.2 wt.% Silicon Strengthened Ductile Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High Silicon Strengthened Ductile Iron (HSiSDI) with 4.2 wt.% of silicon was produced in Y-blocks with different thicknesses to investigate the effects of the solidification rate on microstructure integrity and tensile mechanical properties. With decreasing solidification rates, the graphite degeneracy with the appearance of chunky graphite became more significant at the highest silicon contents, so chemical ordering and graphite degeneracy seemed to be qualitative explanations of tensile property degradation. However, a deeper analysis of the relationship between solidification rate, microstructure and tensile properties was realized through an innovative approach based on the Matrix Assessment Diagram (MAD), where the parameters of Voce equation resulting from best-fitting the experimental tensile flow curves of a significant number of HSiSDI samples, were plotted. For 3.5 wt.% silicon content, the MAD analysis indicated that the microstructure was sound for any solidification rate, while for 4.5 wt.% the microstructure was sound only for the fastest solidification rates. For 4.2 wt.% silicon content the MAD analysis pointed out that the tensile plastic behaviour and the microstructure integrity was in between the 3.5 and 4.5 wt.% silicon contents, representing a composition threshold where the reliable microstructures were only found with the fastest solidification rates, while considerable variability was found for the slowest ones. Support to the MAD analysis results was given from microstructure observations.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
  • Research Institute CNR-ICMATE, Department of Chemical Sciences and Materials Technology, via R. Cozzi 53, 20125 Milano (MI), Italy
  • Research Institute CNR-ICMATE, Department of Chemical Sciences and Materials Technology, via R. Cozzi 53, 20125 Milano (MI), Italy
  • Research Institute CNR-ICMATE, Department of Chemical Sciences and Materials Technology, via R. Cozzi 53, 20125 Milano (MI), Italy
  • Zanardi Fonderie S.p.A., via Nazionale 3, 37046 Minerbe (VR), Italy
Bibliografia
  • 1. Weiβ P., Brachmann J., Bührig-Polaczek A. & Fischer S.F. (2015). Influence of nickel and cobalt on microstructure of silicon solution strengthened ductile iron. Materials Science and Technology, 31(12), 1479–1485. Doi: https://doi.org/10.1179/1743284714Y.0000000735.
  • 2. de la Torre U., Loizaga A., Lacaze J. & Sertucha J. (2014). As cast high silicon ductile irons with optimised mechanical properties and remarkable fatigue properties. Materials Science and Technology, 30(12), 1425–1431. Doi: https://doi.org/10.1179/1743284713Y.0000000483.
  • 3. Sertucha J., Lacaze J., Serrallach J., Suárez R. & Osuna F. (2012). Effect of alloying on mechanical properties of as cast ferritic nodular cast irons. Materials Science and Technology, 28(2), 184–191. Doi: https://doi.org/10.1179/1743284711Y.0000000014.
  • 4. Stets W., Löblich H., Gassner G. & Schumacher P. (2014). Solution strengthened ferritic ductile cast iron properties, production and application. International Journal of Metalcasting, 8(2), 35–40. Doi: https://doi.org/10.1007/BF03355580.
  • 5. Björkegren L.E., Hamberg K. & Johannesson B. (1996). Mechanical properties and machinability of Si-solution-hardened ferritic ductile iron. AFS Transactions, 104, 139–145.
  • 6. Khalil-Allafi J. & Amin-Ahmadi B. (2011). Influence of mold preheating and silicon content on microstructure and casting properties of ductile iron in permanent mold. Journal of Iron and Steel Research International, 18(3), 34–39. Doi: https://doi.org/10.1016/S1006-706X(11)60034-4.
  • 7. González-Martíneza R., de la Torre U., Lacaze J. & Sertucha J. (2018). Effects of high silicon contents on graphite morphology and room temperature mechanical properties of as-cast ferritic ductile cast irons. Part I – Microstructure. Materials Science Engineering: A, 712, 794–802. Doi: https://doi.org/10.1016/j.msea.2017.11.050.
  • 8. González-Martínez R., de la Torre U., Ebelb A., Lacaze J. & Sertucha J. (2018). Effects of high silicon contents on graphite morphology and room temperature mechanical properties of as-cast ferritic ductile cast irons. Part II – Mechanical properties. Materials Science Engineering: A, 712, 803–811. Doi: https://doi.org/10.1016/j.msea.2017.11.051.
  • 9. Bradley W.L. & Srinivasan M.N. (1990). Fracture and fracture toughness of cast irons. International Materials Reviews, 35(1), 129–161. Doi: https://doi.org/10.117/095066090790324028.
  • 10. Angus H.T. (1976). Cast Iron: Physical and Engineering Properties (Second Edition). Butterworth-Heinemann.
  • 11. Lacaze J., Larrañaga P., Asenjo I., Suárez R. & Sertucha J. (2012). Influence of 1 wt% addition of Ni on structural and mechanical properties of ferritic ductile irons. Materials Science and Technology, 28(5), 603–608. Doi: https://doi.org/10.1179/1743284711Y.0000000100.
  • 12. Alhussein A., Risbet M., Bastien A., Chobaut J.P., Balloy D. & Favergeon J. (2014). Influence of silicon and addition elements on the mechanical behavior of ferritic cast iron. Materials Science Engineering: A, 605, 222–228. Doi: https://doi.org/10.1016/j.msea.2014.03.057.
  • 13. Glavas Z., Strkalj A. & Stojakovich A. (2016). The properties of silicon alloyed ferritic ductile irons. Metalurgija, 55(3), 293–296.
  • 14. Fairhurst W. & Röhrig K. (1979). High-silicon nodular irons. Foundry Trade Journal, 146, 657–681.
  • 15. Angella G., Donnini R. & Zanardi F. (2020). Assessment of microstructure effects on tensile behaviour in silicon strengthened ductile irons produced through different cooling rates. International Journal of Cast Metals Research, 33(2–3), 89–102. Doi: https://doi.org/10.1080/13640461.2020.1757917.
  • 16. Karsay S.I. & Campomanes E. (1970). Control of graphite structure in heavy ductile iron castings. AFS Transactions, 78, 85–92.
  • 17. Lacaze J., Magnusson-Åberg L. & Sertucha J. (2013). Review of microstructural features of chunky graphite in ductile cast irons. Keith Millis World Symposium on Ductile Cast Iron: 15–17 October, Nashville. Red Hook (NY): Curran, 360–368.
  • 18. de la Torre U., Lacaze J. & Sertucha J. (2016). Chunky graphite formation in ductile cast irons: effect of silicon, carbon and rare earths. International Journal of Materials Research, 107(11), 1041–1050. Doi: https://doi.org/10.3139/146.111434.
  • 19. Bauer B., Pokopec I. M., Petrič M. & Mrvar P. (2017). Effect of Si and Ni addition on spheroidal morphology in heavy section spheroidal graphite iron parts. Materials Science Forum, 925, 70–77. Doi: https://doi.org/10.4028/www.scientific.net/MSF.925.70.
  • 20. Gagné M. & Argo D. (1987). Heavy section ductile iron castings – Part I: Structure and properties. Advanced Casting Technology: 12–14 November, Kalamazoo. ASM International, 231–244.
  • 21. Källbom R., Hamberg K. & Björkegren L.E. (2005). Chunky-graphite – formation and influence on mechanical properties in ductile cast iron. In: J. Samuelson, G. Marquis, J. Solin (Eds.). Competent Design by Castings: Improvements in a Nordic Project, 13–14 June. Espoo. Helsinki.
  • 22. Celis M.M., Domengès B., Hug E. & Lacze J. (2018). Analysis of nuclei in a heavy-section nodular iron casting. Materials Science Forum, 925, 173–180. Doi: https://doi.org/10.4028/www.scientific.net/MSF.925.173.
  • 23. Minnebo P., Nilsson K.F. & Blagoeva D. (2007). Tensile, compression and fracture properties of thick-walled ductile cast iron components. Journal of Material Engineering and Performance, 16(1), 35–45. Doi: https://doi.org/10.1007/s11665-006-9005-z.
  • 24. Borsato T., Ferro P., Berto F. & Carollo C. (2016). Mechanical and fatigue properties of heavy section solution strengthened ferritic ductile iron castings. Advanced Engineering Materials, 18(12), 2070–2075. Doi: https://doi.org/10.1002/adem.201600256.
  • 25. Goodrich G.M. & Lobenhofer R.W. (2002). Effect of cooling rate on ductile iron mechanical properties. AFS Transactions, 110, 1003–1032.
  • 26. Hsu G.H., Chen M.L. & Hu C.J. (2007). Microstructure and mechanical properties of 4% cobalt and nickel alloyed ductile irons. Materials Science Engineering: A, 444 (1–2), 339–346. Doi: https://doi.org/10.1016/j.msea.2006.09.027.
  • 27. Serrallach J., Lacaze J., Sertucha J., Suárez R. & Monzón A. (2011). Effect of selected alloying elements on mechanical properties of pearlitic nodular cast irons. Key Engineering Materials, 457, 361–366. Doi: https://doi.org/10.4028/www.scientific.net/KEM.457.361.
  • 28. Tartaglia J.M., Gundlach R.B. & Goodrich G.M. (2014). Optimizing structure-property relationships in ductile iron. International Journal of Metalcasting, 8 (4), 7–38. Doi: https://doi.org/10.1007/BF03355592.
  • 29. Ceschini L., Morri Al., Morri An., Salsi E., Squatrito R., Todaro I. & Tomesani L. (2015). Microstructure and mechanical properties of heavy section ductile iron castings: experimental and numerical evaluation of effects of cooling rates. International Journal of Cast Metals Research, 28(6), 365–374. Doi: https://doi.org/10.1179/1743133615Y.0000000022.
  • 30. Zanardi F., Bonollo F., Bonora N., Ruggiero A. & Angella G. (2017). A contribution to new material standards for Ductile Irons and Austempered Ductile Irons. International Journal of Metalcasting, 11(1), 136–147. Doi: https://doi.org/10.1007/s40962-016-0095-6.
  • 31. Ductile Iron Data for Design Engineers – Section III. Engineering Data (Part 1) Tensile Properties: Relationships between Tensile Properties. Retreived from: https://ductile.org [accesed 13 July 2019].
  • 32. Rivera G., Boeri R. & Sikora J. (2003). Influence of the inoculation process, the chemical composition and the cooling rate, on the solidification macro and microstructure of ductile iron. International Journal of Cast Metals Research, 16 (1–3), 23–28. Doi: https://doi.org/10.1080/13640461.2003.11819553.
  • 33. Stefanescu D.M., Ruxanda R. & Dix L.P. (2003). The metallurgy and tensile mechanical properties of thin wall spheroidal graphite irons. International Journal of Cast Metals Research, 16(1–3), 319–324. Doi: https://doi.org/10.1080/13640461.2003.11819602.
  • 34. Pan Y.-N., Lin C.-C. & Chang R.-M. (2012). Assessments of relationship between microstructures and mechanical properties for heavy section ductile cast irons. International Journal of Cast Metals Research, 25(5), 301–306. Doi: https://doi.org/10.1179/1743133612Y.0000000027.
  • 35. Donnini R., Zanardi F., Vettore F. & Angella G. (2018). Evaluation of microstructure quality in ductile irons based on tensile behaviour analysis. Materials Science Forum, 925, 342–349. Doi: https://doi.org/10.4028/www.scientific.net/MSF.925.342.
  • 36. Angella G. & Zanardi F. (2018). Microstructure quality assessment of isothermed ductile irons through tensile tests. 73rd World Foundry Congress “Creative Foundry”: 23–27 September. Krakow. Krakow: Stowarzyszenie Techniczne Odlewników Polskich, 265–266.
  • 37. Angella G. & Zanardi F. (2019). Validation of a New Quality Assessment Procedure for Ductile Irons Production Based on Strain Hardening Analysis. Metals, 9(8), 837–850. Doi: https://doi.org/10.3390/met9080837.
  • 38. Estrin Y. (1996). Dislocation density related constitutive modelling. In: A. Krausz, K. Krausz, Unified Constitutive Laws of Plastic Deformation, 1. New York: Academic Press, 69–106.
  • 39. Kocks U.F. & Mecking H. (2003). Physics and phenomenology of strain hardening: the FCC case. Progress in Materials Science, 48(3), 171–273. Doi: https://doi.org/10.1016/S0079-6425(02)00003-8.
  • 40. Angella G., Zanardi F. & Donnini R. (2016). On the significance to use dislocation-density-related constitutive equations to correlate strain hardening with microstructure of metallic alloys: The case of conventional and austempered ductile irons. Journal of Alloys and Compounds, 669, 262–271. Doi: https://doi.org/10.1016/j.jallcom.2016.01.233.
  • 41. Angella G. & Zanardi F. (2018). Comparison among Different Constitutive Equations on Investigating Tensile Plastic Behavior and Microstructure in Austempered Ductile Iron. Journal of Casting & Materials Engineering, 2(1), 14–23. Doi: https://doi.org/10.7494/jcme.2018.2.1.14.
  • 42. Angella G., Masaggia S., Ripamonti D., Górny M. & Zanardi F. (2019). The role of microstructure on tensile plastic behaviour of ductile iron GJS 400 produced through different cooling rates, Part I: Microstructure. Metals, 9(12), 1282. Doi: https://doi.org/10.3390/met9121282.
  • 43. Angella G., Donnini R., Ripamonti D., Górny M. & Zanardi F. (2019). The role of microstructure on tensile plastic behaviour of ductile iron GJS 400 produced through different cooling rates, Part II: Tensile Modelling. Metals, 9(9), 1019. Doi: https://doi.org/10.3390/met9091019.
  • 44. Angella G., Cova M., Berutzzi G. & Zanardi F. (2020). Soundness Discrimination in Ferrite Ductile Irons through Tensile Data Analysis. International Journal of Metalcasting, 14(3), 816-826. Doi: https://doi.org/10.1007/s40962-020-00435-0.
  • 45. Estrin Y. (1998). Dislocation theory based constitutive equation modelling: foundation and application. Journal of Materials Processing and Technology, 80–81, 33–39. Doi: https://doi.org/10.1016/S0924-0136(98)00208-8.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68470803-da2f-4c66-9f4a-ee7ebb6ad170
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.