PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sorption in an ammonioalunite-ammoniojarosite solid solution: results for the 1, 2, 4, 7, 11, 12 and 13 group elements and LREEs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper collates selected analytical results from a 1-year sorption experiments conducted on natural samples of an ammonioalunite-ammoniojarosite solid solution (AAJ) of known initial composition. These include Electron Microprobe (EPMA) and Powder X-Ray Diffraction (PXRD) results for baths subjected to Li2SO4·H2O, KI, Rb2CO3 (0.33-0.62 wt.% Rb2O in the AAJ, CsCl (0.24-1.07 wt.% Cs2O), Ca(OH)2 (ettringite formation), Sr(NO3)2 (0.31–10.25 wt.% SrO), ZrO(NO3)2·2H2O, MnSO42O, CuSO4·5H2O (up to 1.05 wt.% CuO), ZnCl2, Ga(NO3)3·9H2O (5.86-21.44 wt.% Ga2O3), ZrCl4 (up to 17.56 wt.% ZrO2 in AAJ, i.e., up to 0.27 apfu Zr, InCl3 (0.85–17.04 wt.% In2O3, i.e., possibly up to 0.42 apfu), KH2AsO4 (up to 45.93 wt.% As2O5, recast to 1.64 apfu As), K2SeO3 (up to 44.86 wt.% SeO2, recast to 1.55 apfu Se), LaCl3·7H2O (0.17–0.22 wt.% La2O3), CeCl3·7H2O (0.38–1.74 wt.% Ce2O3), and PrCl3·6H-2O (1.66–4.10 wt.% Pr2O3). Zn, Mn, and I only rarely show accumulation. (NH4)Fe3(AsO4)2[(OH)4(H2O)2] and (NH4)Fe3[(AsO4)(SO4)][(OH)5(H2O)] are occasionally the dominant hypothetical end-members in the As experiment. In the KI case the resulting material is 1.6 times more enriched in K than the base used. Special attention is paid to Zr, with PXRD and EPMA results not ideally coincident with a trial Scanning Electron Microscopy-Electron Backscatter Diffraction study suggesting deposition of tetragonal ZrSiO4 (synthetic zircon).
Rocznik
Strony
art. no. 46
Opis fizyczny
Bibliogr. 93 poz., fot., tab., wykr.
Twórcy
  • Institute of Geological Sciences PAS, Twarda 51/55 Str., PL-00-818 Warszawa, Poland
  • Laboratory of Electron Microscopy, Microanalysis and X-Ray Diffraction, Faculty of Geology, University of Warsaw
  • Laboratory of Electron Microscopy, Microanalysis and X-Ray Diffraction / Department of Geology of Sedimentary Basins, Faculty of Geology, University of Warsaw
Bibliografia
  • 1. Aitchison, J., Greenacre, M., 2002. Biplots of compositional data. Applied Statistics, 51: c375-392; https://doi.org/10.1111/1467-9876.00275
  • 2. Akar, T., Celik, S., Ari, A.G., Akar, S.T., 2013. Removal of Pb2+ ions from contaminated solutions by microbial composite: combined action of a soilborne fungus Mucor plumbeus an alunite matrix. Chemical Engineering Journal, 215-216: 626-634; https://doi.org/10.1016/j.cej.2012.11.001
  • 3. Arabyarmohammadi, H., Salarirad, M.M., Mohammadi, A., 2016. Characterization and utilization of alunite ore for adsorptive removal of zinc: batch and column study. Environmental Engineering and Management Journal, 15: 2761-2770; https://doi.org/10.30638/eemj.2016.003
  • 4. Asokan, P., Saxena, M., Asolekar, S.R., 2006. Jarosite characteristics and its utilisation potentials. Science of the Total Environment,359: 232-243;https://doi.org/10.1016/j.scitotenv.2005.04.024
  • 5. Asta, M.P., Ayora, C., Román-Ross, G., Cama, J., Acero, P., Gault, A.G., Charnock, J.M., Bardelli, F., 2010. Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): The role of iron precipitates. Chemical Geology, 271: 1-12; https://doi.org/10.1016/j.chemgeo.2009.12.005
  • 6. Basciano, L.C., Peterson, R.C., 2007. The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite-hydroniumjarosite solid-solution series. Mineralogical Magazine, 71: 427-441; https://doi.org/10.1180/minmag.2007.071.4.427
  • 7. Bayliss, P., Kolitsch, U., Nickel, E.H., Pring, A., 2010. Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74: 919-927; https://doi.org/10.1180/minmag.2010.074.5.919
  • 8. Bazán, B., Mesa, J.L., Pizarro, J.L., Aguayo, A.T., Arriortua, M.I., Rojo, T., 2003. Fe(AsO4) a new iron(III) arsenate synthesized from thermal treatment of (NH4)[Fe(AsO4)F]. Chemical Communications (Cambridge), 7: 622-623; https://doi.org/10.1039/b210998k
  • 9. Brown, J.B., 1970. A chemical study of some synthetic potassium-hydronium jarosites. Canadian Mineralogist, 10: 696-703.
  • 10. Buccianti, A., Egozcue, J.J., Pawlowsky-Glahn, V., 2014. Variation diagrams to statistically model the behavior of geochemical variables: Theory an applications. Journal of Hydrology, 519 (A): 988-998; https://doi.Org/10.1016/j.hydrol.2014.08.028
  • 11. CONSTANTINO, L.V., QUÍRÍNO, J.N., MONTEIRO, A.M., ABRŠO, T., Parreira, P.S., Urbano, A., Santos, M.J., 2017. Sorption-desorption of selenite and selenite on Mg-Al layered double hydroxide in competition with nitrate, sulfate and phosphate. Chemosphere, 181: 627-634; https://doi.org/10.1016/j.chemosphere.2017.04.071
  • 12. De-la-Cruz-Moreno, J.E., Ceniceros-Gómez, A.E., Morton-Bermea, O., Hernandéz-Álvarez, E., 2021. Recovery of in - dium from jarosite res idues of zinc refinery by a hydrometallurgical process. Hydrometallurgy, 203, 105697; https://doi.org/10.1016/j.hydromet.2021.105697
  • 13. Dijkhuis, R.J.E., 2009. The minimization of copper losses during iron and aluminium precipitation from zinc leach liquors. M.Sc. thesis, Technical University of Delft, The Netherlands; http://resolver.tudelft.nl/uuid:8b703039-58b3-4ec8-bae9-7714db515ed8
  • 14. DroueT, C., NavroTsky, A., 2003. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochimica et Cosmochimica Acta, 67: 2063-2076; https://doi.org/10.1016/S0016-7-7037(02)01299-1
  • 15. DroueT, C., Baron, D., NavroTsky, A., 2003. On the thermochemistry of the solid solution between jarosite and its chromate analog. American Mineralogist, 88: 1949-1954; thttps://doi.org/10.2138/am-2003-11-1238
  • 16. Drouet, C., Pass, K.L., Baron, D., Draucker, S., Navrotsky, A., 2004. Thermochemistry of jarosite-alunite and natrojarosite- natroalunite solid solutions. Geochimica et Cosmochimica Acta, 68: 2197-2205; https://doi.org/10.1016/j.gca.2003.12.001
  • 17. Dutrizac, J.E., 1984. The behaviour of impurities during jarosite precipitation. In: Hydrometallurgical Process Fundamentals (ed. R.G. Bautista, R.G.): 125-169. Springer, New York, USA; https://doi.org/10.1007/978-1-4899-2274-8_6
  • 18. Dutrizac, J.E., 1991. The precipitation of lead jarosite from chloride media. Hydrometallurgy, 26: 327-346; https://doi.org/10.1016/0304-386X(91)90008-A
  • 19. Dutrizac, J.E., 2004. The behaviour of the rare earths during the precipitation of sodium, potassium and lead jarosites. Hydrometallurgy, 73: 11-30; thttps://doi.org/10.1016/j.hydromet.2003.07.009
  • 20. DuTrizac, J.E., Chen, T.T., 1981. The synthesis of mercury jarosite and the mercury concentration in jarosite-family minerals. Canadian Mineralogist, 19: 559-569.
  • 21. Dutrizac, J.E., Chen, T.T., 2000. The behaviour of gallium during jarosite precipitation. Canadian Metallurgical Quarterly, 39: 1-14; https://doi.org/10.1179/cmq.2000.39.1.1
  • 22. Dutrizac, J.E., Chen, T.T., 2004. Factors affecting the incorporation of cobalt and nickel in jarosite-type compounds. Canadian Metallurgical Quarterly, 43: 305-319; https://doi.org/10.1016/j.hydromet.2003.07.009
  • 23. DuTrizac, J.E., Chen, T.T., 2008. Behaviour of the alkaline earth elements (beryllium to radium) during the precipitation of jarosite-type compounds. Canadian Metallurgical Quarterly, 47: 387-401; https://doi.org/10.1179/cmq.2008.47.4.387
  • 24. Dutrizac, J.E., Chen T.T., 2009. The behavior of halides during the precipitation of jarosite-type compounds. World of Metallurgy - Erzmetall, 62: 151-163.
  • 25. Dutrizac, J.E, Jambor, J.L., 1987. Behaviour of cesium and lithium during the precipitation of jarosite-type compounds. Hydrometallurgy, 17: 251-265; https://doi.org/10.1016/0304-386X(87)90056-9
  • 26. Dutrizac, J.E., Jambor, J.L., 2000. Jarosites and Their Application in Hydrometallurgy. Reviews in Mineralogy and Geochemistry, 40: 405-452; https://doi.org/10.2138/rmg.2000.40.8
  • 27. Dutrizac, J.E., Kaiman, S., 1976. Synthesis and properties of jarosite-type compounds. Canadian Mineralogist, 14: 151-158.
  • 28. Dutrizac, J.E., Mingmin, D., 1993. The behaviour of indium during jarosite precipitation. In: World Zinc '93 (ed. I.G. Matthew): 365-372. Australasian Institute of Mining and Metallurgy, Parkville, Australia.
  • 29. Dutrizac, J.E., Dinardo, O., Kaiman, S., 1981. Selenate analogues of jarosite-type compounds. Hydrometallurgy, 6: 327-337; https://doi.org/10.1016/0304-386X(81)90049-9
  • 30. Dutrizac, J.E., Hardy, D.J., Chen, T.T., 1996. The behaviour of cadmium during jarosite precipitation. Hydrometallurgy, 41: 269-285; https://doi.org/10.1016/0304-386X(95)00062-L
  • 31. Dutrizac, J.E., Chen, T.T., Beauchemin, S., 2005. The behaviour of thallium(III) during jarosite precipitation. Hydrometallurgy, 79: 138-153; https://doi.org/10.1016/j.hydromet.2005.06.003
  • 32. Eakle, A.S., Rogers, A.F., 1914. Wilkeite, a new mineral of the apatite group, and okenite, its alteration product, from southern California. American Journal of Sciences, 4th series, 37: 262-267.
  • 33. Egozcue, J.J., Pawlowsky-Glahn, V., 2005. Groups of parts and their balances in compositional data analysis. Mathematical Geology, 37: 795-828; thttps://doi.org/10.1007/s11004-005-7381-9
  • 34. Fairchild, J.G., 1933. Artificial jarosites - the separation of potassium from cesium. American Mineralogist, 18: 543-547.
  • 35. Figueiredo, M.-O., Pereira da Silva, T., 2011. The Positive Environmental Contribution of Jarosite by Retaining Lead in Acid Mine Drainage Areas. International Journal of Environmental Research and Public Health, 8: 1575-1582;https://doi.org/10.3390/ijerph8051575
  • 36. Filzmoser, P., Hron, K., Reimann, C., 2010. The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment, 19: 4230-4238; https://doi.org/10.1016/j.scitotenv.2010.05.011
  • 37. FleeT, M.E., Liu, X., 2008. Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. American Mineralogist,93: 1460-1469; https://doi.org/10.2138/am.2008.2786
  • 38. FleeT, M.E., Liu, X., 2009. Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials, 28: 916-926; https://doi.org/10.1016/j.1016/j.biomaterials.2006.11.003
  • 39. Franzblau, R.E., Loick, N., Weisner, C.G., 2014. Investigating the effects of the Se solid phase substitution in jarosite minerals influenced by bacterial reductive dissolution. Minerals, 4: 17-36; https://doi.org/10.3390/min40100017
  • 40. FROST, R.L., BAHFENNE, S., ČEJKA, J., SEJKORA, J., PLÁŠIL, J., Palmer, S.J., Keefe, E.C., Nemec, I., 2011. Dussertite, BaFe3+3(AsO4)2(OH)5 - a Raman spectroscopic study of a hydroxy-arsenate mineral. Journal of Raman Spectroscopy, 42: 56-61; https://doi.org/10.1002/jrs.2612
  • 41. Gräfe, M., Beattie, D.A., Smith, E., Skinner, W.M., Singh, B., 2008. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite. Journal of Colloid and Interface Science, 322: 399-413; https://doi.org/10.1016/j.jcis.2008.02.044
  • 42. Grey, I.E., Mumme, W.G., Mills, S.J., Birch, W.D., Wilson, N.C., 2009 The crystal chemical role of Zn in alunite-type minerals: Structure refinements for kintoreite and zincian kintoreite. American Mineralogist, 94: 676-683; https://doi.org/10.2138/am.2009.3083
  • 43. Hage, J.L.T., Schuiling, R.D., 2000. Comparative column elution of jarosite waste and its autoclaved product - evidence for the immobilization of deleterious elements in jarosite. Minerals Engineering, 13: 287-296;https://doi.org/10.1016/S0892-6875(00)00008-X
  • 44. Hammer, O., Harper, D.AT., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1-9.
  • 45. HiKov, A., 2013. Geochemistry of hydrothermally altered rocks from the Asarel porphyry copper deposit, Central Srednogorie. Geologia Balcanica, 42: 3-28; https://doi.org/10.52321/GeolBalc.42.1-3.3
  • 46. Hron, K., FiLzmoser, P., DonevsKa, S., Fišerová, E., 2013. Covariance-based variable selection for compositional data. Mathematical Geosciences, 45: 487-498; https://doi.org/10.1007/s11004-013-9450-9
  • 47. Hudson-Edwards, K.A., 2019. Uptake and release of arsenic and antimony in alunite-jarosite and beudantite group minerals. American Mineralogist, 104: 633-640; https://doi.org/10.2138/am-2019-6591
  • 48. Hudson-Edwards, K.A., WrighT, K., 2011. Computer simulations of the interactions of the (0 1 2) and (0 0 1) surfaces of jarosite with Al, Cd, Cu2+ and Zn. Geochimica et Cosmochimica Atca, 75: 52-62; https://doi.org/10.1016/j.gca.2010.10.004
  • 49. IijaaLi, M., MaLaman, M., GLeiTzer, C., 1989. Fe4(PO4)3(OH). A ferric hydroxyphosphate with an ordered iron-deficient ß-Fe2(PO4)O structure. European Journal of Solid State Inorganic Chemistry, 26: 73-89.
  • 50. Ivarson, K.C., Ross, G.J., Miles, N.M., 1981. Formation of rubidium jarosite during the microbiological oxidation of ferrous iron at room temperature. Canadian Mineralogist, 19: 429-434.
  • 51. Jambor, J.L., 1999. Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37: 1232-1341; https://doi.org/10.2113/gscanmin.38.5.1298
  • 52. Jones, F., 2017. Crystallization of Jarosite with Variable Al3+ Content: The Transition to Alunite. Minerals, 7; https://doi.org/10.3390/min7060090
  • 53. Kamoun, F., Lorenz, M., Kempe, G., 1989. Contributions to the formation of oxidic iron(III) compounds in the presence of foreign cations. Journal of Materials Science, 24: 726-730; https://doi.org/10.1007/BF01107466
  • 54. Kaufman, E.A., Zeller, M., Norquist, A.J., 2010. A slow leak synthetic route to organically templated gallium sulfates. Crystal Growth and Design, 10: 4656-4661; https://doi.org/10.1012/cg1009412
  • 55. Kavak, D., 2008. Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal of Hazardous Materials, 163: 308-314; https://doi.org/10.1016/j.hazmat.2008.06.093
  • 56. Kim, H.-S., Park, J.-W., An, Y.-J., Bae, J.-S., Han, C., 2011. Activation of ground granulated blast furnace slag cement by calcined alunite. Materials Transactions, 52: 210-218; https://doi.org/10.2320/matertrans.M2010350
  • 57. Kolitsch, U., 2015. Crystal structures of the hydrothermally synthesized chromates KSc3(CrO4)2(OH)6, KIn3(CrO4)2(OH)6, RbIn3(CrO4)2(OH)6, and AgIn3(CrO4)2(OH)6: a contribution to the crystal chemistry of the alunite supergroup. The Canadian Mineralogist, 53: 833-844; https://doi.org/10.3749/canmin.1400103
  • 58. Kolitsch, U., Pring, A., 2001. Crystal chemistry of the crandallite, beudantite and alunite groups: a review and evaluation of the suitability as storage materials for toxic metals. Journal of Mineralogical and Petrological Sciences, 96: 67-78; https://doi.org/10.2465/jmps.96.67
  • 59. Kosova, N.V., Shindrov, A., Kabanov, A.A., 2020. Theoretical and experimental study of reversible intercalation of Li ions in the Jarosite NaFe3(SO4)2(OH)6 structure. Electrochimica Acta, 359: 136950; https://doi.org/10.1016/j.electacta.2020.136950
  • 60. Kydon, D.W., Pintar, M., Petch, H.E., 1968. NMR evidence of H3O+ ions in gallium sulfate. Journal of Chemical Physics, 48: 5348-5351.
  • 61. KYNCLOVÁ, P., HRON, K., FILZMOSER, P., 2017. Correlation between compositional parts based on symmetrical balances. Mathematical Geosciences, 49: 777-796; https://doi.org/10.1007/s11004-016-9669-3
  • 62. Lehmann, E.L., 1975. Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco; ISBN978-0-387- 35212-1.
  • 63. Lengauer, C.L., Giester, G., Irran, E., 2013. KCr3(SO4)2(OH)6: Synthesis, characterization, powder diffraction data, and structure refinement by the Rietveld technique and a compilation of alunite-type compounds. Powder Diffraction, 9: 265-271; https://doi.org/10.1017/S0885715600018984
  • 64. Li, G., Peacor, D.R., Essene, E.J., Brosnahan, D.R., Beane, R.E., 1992. Walthierite, Ba0.5Al3(SO4)2(OH)6, and huangite, Ca0.5Al3(SO4)2(OH)6, two new minerals of the alunite group from the Coquimbo region, Chile. American Mineralogist, 77: 1275-1284.
  • 65. Liu, C., Ling, Z., Cao, F., Chen, J., 2017. Comparative Raman and visible near-infrared spectroscopic studies of jarosite endmember mixtures and solid solutions relevant to Mars. Journal of Raman Spectroscopy, 48: 1676-1684; https://doi.org/10.1002/jrs.5286
  • 66. Luddington, S., Bookstrom, A.A., KamiLLi, R.J., WaLker, B.M., KLein, D.P., 1995. Climax Mo deposits (Model 16). Summary of relevant geologic, geoenvironmental, and geophysical information. Chapter 10. In: Preliminary Compilation of Descriptive Geoenvironmental Mineral Deposit Modelsdu (ed. E.A. Bray): 70-74. Open-File Report 95-831, U.S. Department of the Interior, U.S. Geological Survey, USA; https://doi.org/10.1002/jrs.5286
  • 67. May, I., Schnepfe, M.M., Naeser, C.R., 1963. Strontium Sorption Studies on Crandallite. Contributions to Geochemistry, Geological Survey Bulletin, 1114-C: C1-C17; https://doi.org/10.3133/tei819
  • 68. Mindat, 2022. www.mindat.org, data retrieved on 20.08.2022. Misra, K.C., 2012. Ionic substitution in crystals. Chapter 3.3. In: Introduction to Geochemistry, Principles and Applications (ed. K.C. Misra). Wiley-Blackwell, Hoboken, New Jersey, USA; ISBN978-1-4443-5095-1
  • 69. Murray, J., Kirschbaum, A., DoLd, B., Guimaraes, E.M., Panunzio Miner, E.V., 2014. Jarosite versus soluble iron-sulfate formation and their role in acid mine drainage formation at the Pan de Azúcar Minetailings (Zn-Pb-Ag), NW Argentina. Minerals, 4: 477-502; https://doi.org/10.3390/min4020477
  • 70. Nakada, R., Takanashi, Y., Tanimizu, M., 2013. Isotopic and speciation study on cerium during its solid-water distribution with implication for Ce stable isotope as a paleo-redox proxy. Geochimica et Cosmochimica Acta, 103: 49-62; https://doi.org/10.1016/j.gca.2012.10.045
  • 71. Nheta, W., Makhata, M.E., 2013. Leaching of Nickel from a Jarosite Precipitate with Hydrochloric Acid. International Conference on Chemical and Environmental Engineering, April 15-16, Johannesburg, South Africa, (abstract book): 18-21.
  • 72. Okada, K., Soga, H., Ossaka, J., Otsuka, N., 1987. Syntheses of minamiite type compounds, M0.5Al3(SO4)2(OH)6 with M = Sr2+, Pb2+ and Ba2+. Neues Jahrbuch für Mineralogie - Monatshefte: 64-70; https://doi.org/10.1002/jrs.5286
  • 73. Paktunc, D., Dutrizac, J.E., 2003. Characterization of arsenate-for-sulfate substitution in synthetic jarosite using X-Ray Diffraction and X-Ray Absorption Spectroscopy. The Canadian Mineralogist, 41: 905-919; https://doi.org/10.2113/gscanmin.41.4.905
  • 74. Parafiniuk, J., Kruszewski, £., 2010. Minerals of the ammonioalunite-ammoniojarosite series formed on a burning coal dump at Czerwionka, Upper Silesian Coal Basin, Poland. Mineralogical Magazine, 74: 731-745; https://doi.org/10.1180/minmag.2010.074.4.731
  • 75. Pauling, L., 1961. The nature of the chemical bond. Cornell University Press, Ithaca, New York, USA; http://abulafia.mt.ic.ac.uk/shannon (visited 22.12.2022).
  • 76. Ptácek, P., 2016. Substituents and Dopants in the Structure of Apatite. Chapter 6. In: Apatites and their Synthetic Analogues - Synthesis, Structure, Properties and Applications Intechopen (ed. P. Ptáček): 289-334, Amazon.com; https://doi.org/10.5772/62213
  • 77. REYES, I.A., MIRELES, I., Patińo, F., PANDIYAN, T., FLORES, M.U., Palacios, E.G., Gutiérrez, E.J., Reyes, M., 2016. A study on the dissolution rates of K-Cr(VI)-jarosites: kinetic analysis and implications. Geochemical Transactions, 17; https://doi.org/10.1186/s12932-016-0035-7
  • 78. Rudolph, W.W., Schmidt, P., 2011. Studies on synthetic galloalunites AGa3(SO4)2(OH)6: Synthesis, thermal analysis, and X-ray characterization. Thermochimica Acta, 521: 112-120; dhttps://doi.org/10.1016/j.tca.2011.04.013
  • 79. Rytuba, J.J., John, D.A., Foster, A., LuDington, S.D., Kotlyar, B., 2003. Hydrothermal Enrichment of Gallium in Zones of Advanced Argillitic Alteration - Examples from the Paradise Peak and McDermitt Ore Deposits, Nevada. Chapter C. In: Contributions to Industrial-Minerals Research, Bulletin 2209-C (eds J.D. Bliss, P.R. Moyle and K.R. Long). U.S. Department of the Interior, U.S. Geological Survey.
  • 80. Strawn, D., Doner, H., Zavarin, M., McHugo, S., 2002. Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma, 108: 237-257; https://doi.org/10.1016/S0016-7061(02)00133-7
  • 81. Sunyer i BorreLL, A., 2013. Arsenic intertization through alunite-type phases: Application to copper pyrometallurgy. Ph.D. thesis, Universitat de Barcelona.
  • 82. Tam, T.H., Tran, T., 1991. Kinetic study on the precipitation of alunite from manganese sulphate solutions. Hydrometallurgy, 27: 85-97; https://doi.org/10.1016/0304-386X(91)90080-6
  • 83. Teixeira, L.A., Tavares, L.Y., 1986. Precipitation of jarosite from manganese sulphate solutions. International Symposium on Iron Control in Hydrometallurgy, October 19-22, Toronto, Ontario, Canada, IV, chapter 21, p. 431, 24 pp.
  • 84. The Materials Project, 2020. Materials Data on CsCl by Materials Project; (...) CeCl3; (...) LaCl3; USA; https://doi.org/10.17188/1199031; 10.17188/1199061; 10.17188/1199330; 10.17188/1309795; https://www.osti.gov/dataexplorer/biblio/dataset/, retrieved on 22.08.2022.
  • 85. Wang, L., Xue, N., Zhang, Y., Hu, P., 2021. Controlled hydrothermal precipitation of alunite and natroalunite in high-aluminium vanadium-bearing aqueous system. Minerals, .11: 892; https://doi.org/10.3390/min11080892
  • 86. Weil, M., 2004. FeII3FeIII4(AsO4)6, the first arsenate adopting the Fe7(PO4)6 structure type. Acta Crystallographica Section E - Structure Reports, 60: i139-i141; https://doi.org/10.1107/S1600536804026182
  • 87. White, D.T., Gillaspie, J.D., 2013. Acid leaching of nickel laterites with jarosite precipitation. In: Ni-Co 2013 (eds. Battle, T., Moats, M., Cocalia, V., Oosterhof, H., Alam, S., Allanore, A., Jones, R., Stubina, N., Anderson, C., Wang, S.): 75-95. The Minerals, Metals and Materials Society, Springer, Cham, Switzerland; https://doi.org/10.1007/978-3-319-48147-0_4
  • 88. ŽÁČEK, V., ŠKODA, R., LAUFEK, F., 2008. Mo-bearing jarosite from supergene zone of medieval Au-Ag deposit at Hůrky near Rakovník, Czech Republic (in Czech with English summary). Bulletin mineralogicko-petrologického Odděleni Národního Muzea v Praze, 16: 190-193; ISSN 1211-0329
  • 89. Zema, M., Callegari, A.M., Tarantino, S.C., Gasparini, E., Ghigna, P., 2012. Thermal expansion of alunite up to dehydroxylation and collapse of the crystal structure. Mineralogical Magazine, 76: 613-623; https://doi.org/10.1180/minmag.2012.076.3.12
  • 90. Zhang, H. (eD.), 2011. Building Materials in Civil Engineering. Woodhead Publishing Limited, Sawston, Cambridge, UK; ISBN 9781845699567.
  • 91. Zhao, Y.-Y.S., McLennan, S.M., Schoonen, M.A.A., 2014. Behavior of bromide, chloride, and phosphate during low-temperature aqueous Fe(II) oxi dation processes on Mars. Journal of Geophysical Research: Planets, 119: 998-1002; https://doi.org/10.1002/2013JE004417
  • 92. Zhao, R., Li, Y., Chan, C.K., 2016. Synthesis of jarosite and vanadium jarosite analogues using microwave hydrothermal reaction and evaluation of composition-dependent electrochemical properties. The Journal of Physical Chem ist C, 120: 9702-9712; https://doi.org/10.1021/acs.jpcc.6b03195
  • 93. Zhao, Y., Hu, K., Wang, D., Zhang, S., Wang, P., Dong, W., Chen, H., Zhao, W., Huang, F., 2019. Synthesis, crystal structure and excellent selective Pb2+ ion adsorption of new layered compound (NH4)In3(SO4)2(OH)6. European Journal of Inorganic Chemistry, 47: 5000-5007; https://doi.org/10.1002/ejic.201901015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-683eef8d-9f9f-4159-912b-456e43c322bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.