Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The directions and speed of development of plane avionics systems are determined by three factors: economical consideration, required safety levels, and optimized working conditions for the pilot. This article presents the concept of a system in which the automatic control and stabilization process is effected because of coordinated deflections of trimming surfaces: the rudder, the elevator, and the ailerons. In particular, this article presents the structure of the system in the longitudinal movement steering channel by way of deflection of the trimmer of the elevator. Furthermore, it discusses the results of numerical model simulations, which are compared to the results obtained during in-flight tests. Additionally, this article specifies general technical requirements for the servomechanisms intended for the system class discussed herein. Selection of sufficiently large amplification makes control the plane with relatively small deflections of the trimmer. In particular, relationship between the deflection of the elevator and the deflection of trimmer, view of a tail plane and dimensions of the elevator trimmer, the structure and results of the pitch angle control system and simulation are presented in the article.
Wydawca
Czasopismo
Rocznik
Tom
Strony
223--230
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
- Institute of Aviation Centre of Space Technologies, Avionics Division Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.:+48 (22) 846 00 11, ext. 521, ext. 664
autor
- Institute of Aviation Centre of Space Technologies, Avionics Division Krakowska Av. 110/114, 02-256 Warsaw, Poland tel.:+48 (22) 846 00 11, ext. 521, ext. 664
Bibliografia
- [1] Krawczyk, M., Graffstein, J., A Proposition of Control Augmentation System for Dumping the Harmful Impact of Slipstream in Turboprop Airplanes, Scientific Papers of Rzeszów University of Technology-Mechanics, Vol. 288, pp. 287-295, Rzeszów 2013.
- [2] MIL-F-8785C – Military specification flying qualities of piloted airplanes, 1980.
- [3] European Aviation Safety Agency, CS-23 – Certification Specifications for Normal, Utility, Aerobatic, and Commuter Category Aeroplanes, 2012.
- [4] Perkins, D. C., Hage, E. R., Airplane Performance Stability and Control, Wiley, Detroit 1949.
- [5] Levy, D., Design of a Full Time Wing Leveler System Using Tab Driven Aileron Controls, Guidance, Navigation and Control Conference, Hilton Head, 1992.
- [6] Fiszdon, W., Mechnika Lotu, Państwowe Wydawnictwo Naukowe, Warszawa 1961
- [7] Kopecki, G., Pieniążek, J., Rogalski, T., Rzucidło, P., Tomczyk, A., Proposal for navigation and control system for small UAV, Aviation, Vol. 14(3), pp. 77-82, 2010.
- [8] Samolej, S., Rogalski, T., Nowak, D., Flight Control System on The Vxworks Real-Time Operating System Platform – Selected Implementation Issues, Scientific Papers of Rzeszów University of Technology-Mechanics, Vol. 288, pp. 515-524, 2013.
- [9] Rogalski, T., The idea of a system increasing flight safety, Aviation, Vol. 14(4), pp. 112-116, 2010.
- [10] Rogalski, T., Algorytmy sterowania lotem samolotu bezzałogowego w nietypowych stany lotu, Technika Transportu Szynowego, Vol. 12/2015, 2015.
- [11] Tomczyk, A., Pokładowe Cyfrowe Systemy Sterowania Samolotem, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 1999.
- [12] Bociek, S., Gruszecki, J., Układy sterowania automatycznego samolotem, Oficyna Wyd. Politechniki Rzeszowskiej, Rzeszów 1999.
- [13] Krawczyk, M., Rogalski, T., General Overview of Experimental Control System Developed on I-23 Manager Aircraft, Transactions of the Institute of Aviation, Vol. 4(206), pp. 93-102, 2010.
- [14] Etkin, B., Dynamics of flight: stability and control, Wiley, New York 1996.
- [15] Phillips, W. F., Mechanics of Flight, John Wiley & Sons, 2004.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-683e92e3-4634-410a-b02f-3e26234705ef