PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Earthquake precursory research in western Himalaya based on the multi-parametric geophysical observatory data

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The opening of cracks and influx of fluids in the dilatancy zone of impending earthquake is expected to induce short-term changes in physical/ chemical/hydrological properties during earthquake build-up cycle, which should be reflected in time-varying geophysical fields. With this rationale, eleven geophysical parameters are being recorded in continuous mode at the Multi-Parametric Geophysical Observatory (MPGO), in Ghuttu, Garhwal Himalaya, for earthquake precursory research. The critical analysis of various geophysical time series indicates anomalous behavior at few occasions; however, the data is also influenced by many external forces. These external influences are the major deterrent for the isolation of precursory signals. The recent work is focused on the dataadoptive techniques to estimate and eliminate effects of solar-terrestrial and hydrological/environmental factors for delimiting the data to identify short-term precursors. Although any significant earthquake is not reported close to the observatory, some weak precursory signals and coseismic changes have been identified in few parameters related to the occurrence of moderate and strong earthquakes.
Czasopismo
Rocznik
Strony
977--999
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
autor
  • Wadia Institute of Himalayan Geology, Dehradun, India
autor
  • Wadia Institute of Himalayan Geology, Dehradun, India
autor
  • Wadia Institute of Himalayan Geology, Dehradun, India
autor
  • Wadia Institute of Himalayan Geology, Dehradun, India
Bibliografia
  • Arora, B.R., Kamal, A. Kumar, G. Rawat, N. Kumar, and V.M. Choubey (2008), First observations of free oscillations of the earth from Indian superconducting gravimeter in Himalaya, Curr. Sci. India 95, 11, 1611-1617.
  • Arora, B.R., V.M. Choubey, N. Kumar, and G. Rawat (2011), Multi-parameter geophysical observatory: initiative for integrated earthquake precursory research. In: Pre-workshop Proc. of National Conf. on “Geosciences and Water Resources for Sustainable Development”, 11-12 February 2011, Dept. Geophysics, Andhra University, Visakhapatnam, India, 6-16.
  • Arora, B.R., V.K. Gahalaut, and N. Kumar (2012a), Structural control on alongstrike variation in the seismicity of the northwest Himalaya, J. Asian Earth Sci. 57, 15-24, DOI: 10.1016/j.jseaes.2012.06.001.
  • Arora, B.R., G. Rawat, N. Kumar, and V.M. Choubey (2012b), Multi-Parameter Geophysical Observatory: gateway to integrated earthquake precursory research, Curr. Sci. India 103, 11, 1286-1299.
  • Bourges, F., P. Genthon, A. Mangin, and D. D’Hulst (2006), Microclimates of l’Aven d’ Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas), Int. J. Climatol. 26, 12, 1651-1670, DOI: 10.1002/joc.1327.
  • Chadha, R.K., A.P. Pandey, and H.J. Kuempel (2003), Search for earthquake precursors in well water levels in a localized seismically active area of Reservoir Triggered Earthquakes in India, Geophys. Res. Lett. 30, 7, 1416, DOI: 10.1029/2002GL016694.
  • Choubey, V.M., N. Kumar, and B.R. Arora (2009), Precursory signatures in the radon and geohydrological borehole data for M4.9 Kharsali earthquake of
  • Garhwal Himalaya, Sci. Total Environ. 407, 22, 5877-5883, DOI: 10.1016/j.scitotenv.2009.08.010.
  • Choubey, V.M., B.R. Arora, S.M. Barbosa, N. Kumar, and L. Kamra (2011), Seasonal and daily variation of radon at 10 m depth in borehole, Garhwal Lesser Himalaya, India, Appl. Radiat. Isotopes 69, 7, 1070-1078, DOI: 10.1016/j.apradiso.2011.03.027.
  • Cicerone, R.D., J.E. Ebel, and J. Britton (2009), A systematic compilation of earthquake precursors, Tectonophysics 476, 3-4, 371-396, DOI: 10.1016/j.tecto.2009.06.008.
  • Dudkin, F., G. Rawat, B.R. Arora, V. Korepanov, O. Leontyeva, and A.K. Sharma (2010), Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in Koyna–Warna seismoactive region, West India, Nat. Hazards Earth Syst. Sci. 10, 1513-1522, DOI: 10.5194/nhess-10-1513-2010.
  • Fedorov, E., V. Pilipenko, and S. Uyeda (2001), Electric and magnetic fields generated by electrokinetic processes in conductive crust, Phys. Chem. Earth C 26, 10-12, 793-799, DOI: 10.1016/S1464-1917(01)95027-5.
  • Fitterman, D.V. (1979), Theory of electrokinetic-magnetic anomalies in a faulted half-space, J. Geophys. Res. 84, B11, 6031-6040, DOI: 10.1029/JB084iB11p06031.
  • Gansser, A. (1964), Geology of the Himalaya, Interscience, New York, 298 pp.
  • Ghosh, D., A. Deb, and R. Sengupta (2009), Anomalous radon emission as precursor of earthquake, J. Appl. Geophys. 69, 2, 67-81, DOI: 10.1016/j.jappgeo.2009.06.001.
  • Gitis, V., E. Yurkov, B. Arora, S. Chabak, N. Kumar, and P. Baidya (2008), Analysis of seismicity in North India, Russ. J. Earth Sci. 10, ES5002, DOI: 10.2205/2008ES000303.
  • Gregorič, A., A. Zidanšek, and J. Vaupotič (2011), Dependence of radon levels in Postojna Cave on outside air temperature, Nat. Hazards Earth Syst. Sci. 11, 1523-1528, DOI: 10.5194/nhess-11-1523-2011.
  • Gupta, H., D. Shashidhar, M. Pereira, P. Mandal, N.P. Rao, M. Kousalya, H.V.S. Satyanarayana, and V.P. Dimri (2007), Earthquake forecast appears feasible at Koyna, India, Curr. Sci. India 93, 6, 843-848.
  • Hirata, N. (2004), Past, current and future of Japanese national program for earthquake prediction research, Earth Planets Space 56, 8, 43-50.
  • Holliday, J.R., K.Z. Nanjo, K.F. Tiampo, J.B. Rundle, and D.L. Turcotte (2005), Earthquake forecasting and its verification, Nonlin. Process. Geophys. 12, 6, 965-977, DOI: 10.5194/npg-12-965-2005.
  • Hubbard, L.M., and N. Hagberg (1996), Time-variation of the soil gas radon concentration under and near a Swedish house, Environ. Int. 22, Suppl. 1, 477-482, DOI: 10.1016/S0160-4120(96)00148-1.
  • Imanishi, Y., T. Sato, T. Higashi, W. Sun, and S. Okubo (2004), A network of superconducting gravimeters detects submicrogal coseismic gravity changes, Science 306, 5695, 476-478, DOI: 10.1126/science.1101875.
  • İnan, S.,T. Akgül, C. Seyis, R. Saatçilar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B3, DOI: 10.1029/2007JB005206.
  • Iskandar, D., H. Yamazawa, and T. Iida (2004), Quantification of the dependency of radon emanation power on soil temperature, Appl. Radiat. Isotopes 60, 6, 971-973, DOI: 10.1016/j.apradiso.2004.02.003.
  • Ismaguilov, V.S., Yu.A. Kopytenko, K. Hattori, and M. Hayakawa (2003), Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes, Nat. Hazards Earth Syst. Sci. 3, 3/4, 211-215, DOI: 10.5194/nhess-3-211-2003.
  • Johnston, M.J.S., and R.J. Mueller (1987), Seismomagnetic observation during the 8 July 1986 magnitude 5.9 North Palm Springs earthquake, Science 237, 4819, 1201-1203, DOI: 10.1126/science.237.4819.1201.
  • Johnston, M.J.S., R.J. Mueller, and V. Keller (1981), Preseismic and coseismic magnetic field measurements near the Coyote Lake, California, earthquake of August 6, 1979, J. Geophys. Res. 86, B2, 921-926, DOI: 10.1029/JB086iB02p00921.
  • Johnston, M.J.S., J.R. Mueller, and Y. Sasai (1994), Magnetic field observations in the near-field of the 28 June 1992 Mw 7.3 Landers, California earthquake, Bull. Seismol. Soc. Am. 84, 3, 792-798.
  • Kamra, L., V.M. Choubey, N. Kumar, G. Rawat, and D.D. Khandelwal (2013), Radon variability in borehole from Multi-Parametric Geophysical Observatory of NW Himalaya in relation to meteorological parameters, Appl. Radiat. Isotopes 72, 137-144, DOI: 10.1016/j.apradiso.2012.10.019.
  • Kayal, J.R. (2001), Microearthquake activity in some parts of the Himalaya and the tectonic model, Tectonophysics 339, 3-4, 331-351, DOI: 10.1016/S0040-1951(01)00129-9.
  • Keilis-Borok, V. (2002), Earthquake prediction: State-of-the-art and emerging possibilities, Ann. Rev. Earth Planet Sci. 30, 1-33, DOI: 10.1146/annurev.earth.30.100301.083856.
  • Keilis-Borok, V.I., and A.A. Soloviev (eds.) (2003), Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, Springer, Berlin-Heidelberg, 337 pp.
  • Kopytenko, Yu.A., V.S. Ismaguilov, K. Hattori, and M. Hayakawa (2006), Determination of hearth position of a forthcoming strong EQ using gradients and phase velocities of ULF geomagnetic disturbances, Phys. Chem. Earth 31, 4-9, 292-298, DOI: 10.1016/j.pce.2006.02.004.
  • Kumar, N., A. Paul, A.K. Mahajan, D.K. Yadav, and C. Bora (2012), The Mw 5.0 Kharsali, Garhwal Himalayan earthquake of 23 July 2007: source characterization and tectonic implications, Curr. Sci. India 102, 12, 1674-1682.
  • Lyubushin, A.A., B.R. Arora, and N. Kumar (2010), Investigation of seismicity in western Himalaya, Russ. J. Geophys. Res. 11, 1, 27-34.
  • Matsuo, K., and K. Heki (2011), Coseismic gravity changes of the 2011 Tohoku-Oki earthquake from satellite gravimetry, Geophys. Res. Lett. 38, 7, L00G12, DOI: 10.1029/2011GL049018.
  • Mizutani, H., T. Ishido, T. Yokokura, and S. Ohnishi (1976), Electrokinetic phenomena associated with earthquakes, Geophys. Res. Lett. 3, 7, 365-368, DOI: 10.1029/GL003i007p00365.
  • Mjachkin, V.I., W.F. Brace, G.A. Sobolev, and J.H. Dieterich (1975), Two models for earthquake forerunners, Pure Appl. Geophys. 113, 1, 169-181, DOI: 10.1007/BF01592908.
  • Nawa, K., N. Suda, I. Yamada, R. Miyajima, and S. Okubo (2009), Coseismic change and precipitation effect in temporal gravity variation at Inuyama, Japan: A case of the 2004 off the Kii penisula earthquakes observed with
  • a superconducting gravimeter, J. Geodyn. 48, 1, 1-5, DOI: 10.1016/j.jog.2009.01.006.
  • Ogawa, T., and H. Utada (2000), Coseismic piezoelectric effects due to a dislocation: 1. An analytic far and early-time field solution in a homogeneous whole space, Phys. Earth Planet. In. 121, 3-4, 273-288, DOI: 10.1016/S0031-9201(00)00177-1.
  • Ogawa, T., K. Oike, and T. Miura (1985), Electromagnetic radiations from rocks, J. Geophys. Res. 90, D4, 6245-6249, DOI: 10.1029/JD090iD04p06245.
  • Okabe, S. (1956), Time variation of the atmospheric radon-content near the ground surface with relation to some geophysical phenomena, Mem. Coll. Sci. Univ. Kyoto A 28, 99-115.
  • Oldhman, T. (1883), A catalogue of Indian earthquakes, Mem. Geol. Surv. Ind. 19, 3, 493-503.
  • Paul, A., and N. Kumar (2010), Estimates of source parameters of M 4.9 Kharsali earthquake using waveform modelling, J. Earth Syst. Sci. 119, 5, 731-743, DOI: 10.1007/s12040-010-0050-5.
  • Perrier, F., and P. Richon (2010), Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing, J. Environ. Radioact. 101, 4, 279-296, DOI: 10.1016/j.jenvrad.2009.12.003.
  • Perrier, F., P. Richon, U. Gautam, D.R. Tiwari, P. Shrestha, and S.N. Sapkota (2007), Seasonal variations of natural ventilation and radon-222 exhalation in a slightly rising dead-end tunnel, J. Environ. Radioact. 97, 2-3, 220-235, DOI: 10.1016/j.jenvrad.2007.06.003.
  • Ramola, R.C., M. Singh, A.S. Sandhu, S. Singh, and H.S. Virk (1990), The use of radon as an earthquake precursor, Nucl. Geophys. 4, 2, 275-287.
  • Reddy, D.V., and P. Nagabhushanam (2011), Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India, Appl. Geochem. 26, 5, 731-737, DOI: 10.1016/j.apgeochem.2011.01.031.
  • Richon, P., J.-C. Sabroux, M. Halbwachs, J. Vandemeulebrouck, N. Poussielgue, J. Tabbagh, and R. Punongbayan (2003), Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994), Geophys. Res. Lett. 30, 9, 1481, DOI: 10.1029/2003GL016902.
  • Sadovsky, M.A., I.L. Nersesov, S.K. Nigmatullaev, L.A. Latynina, A.A. Lukk, A.N. Semenov, I.G. Simbireva, and V.I. Ulomov (1972), The processes preceding strong earthquakes in some regions of middle Asia, Tectonophysics 14, 3-4, 295-307, DOI: 10.1016/0040-1951(72)90078-9.
  • Scholz, C.H., L.R. Sykes, and Y.P. Aggarwal (1973), Earthquake prediction: A physical basis, Science 181, 4102, 803-810, DOI: 10.1126/science.181.4102.803.
  • Surkov, V.V., O.A. Molchanov, and M. Hayakawa (2004), A direction finding technique for the ULF electromagnetic source, Nat. Hazards Earth Syst. Sci. 4, 4, 513-517, DOI: 10.5194/nhess-4-513-2004.
  • Talwani, P., W.S. Moore., and J. Chiang (1980), Radon anomalies and microearthquakes at Lake Jocassee, South Carolina, J. Geophys. Res. 85, B6, 3079-3088, DOI: 10.1029/JB085iB06p03079.
  • Tanner, A.B. (1980), Radon migration in the ground: A supplementary review. In: T.F. Gesell and W.M. Lowder (eds.), Proc. Symp. Natural Radiation Environment III, 23-28 April 1978, Houston, USA, NTIS, U.S. Dept. of Energy Report CONF-780422, 1, 5-56.
  • Thakur, V.C. (1992), Geology of Western Himalaya, Pregamon Press, Oxford, 366 pp.
  • Tributsch, H. (1982), When the Snakes Awake: Animals and Earthquake Prediction, MIT Press, Cambridge, 248 pp.
  • Turcotte, D.L. (1991), Earthquake prediction, Ann. Rev. Earth. Planet. Sci. 19, 263-281, DOI: 10.1146/annurev.ea.19.050191.001403.
  • Uyeda, S., T. Nagao, and M. Kamogawa (2009), Sort-term earthquake prediction: Current status of seismo-electromagnetics, Tectonophysics 470, 3-4, 205-213, DOI: 10.1016/j.tecto.2008.07.019.
  • Valdiya, K.S. (1976), Himalayan transverse faults and folds and their parallelism with subsurface structures of North Indian plains, Tectonophysics 32, 3-4, 353-386, DOI: 10.1016/0040-1951(76)90069-X.
  • Virk, H.S., V. Walia, A.K. Sharma, and N. Kumar (2000), Correlation of radon anomalies with microseismic events in Kangra and Chamba valleys of NW Himalaya, Geofisica Int. Mexico 39, 3, 221-228.
  • Virk, H.S., V. Walia, and N. Kumar (2001), Helium/radon precursory anomalies of Chamoli earthquake, Garhwal Himalaya, India, J. Geodynam. 31, 2, 201-210, DOI: 10.1016/S0264-3707(00)00022-3.
  • Walia, V., H.S. Virk, T.F. Yang, S. Mahajan, M. Walia, and B.S. Bajwa (2005), Earthquake prediction studies using radon as a precursor in N-W Himalayas, India: A case study, Terr. Atmos. Ocean. Sci. 16, 4, 775-804.
  • Walia, V., S.J. Lin, W.L. Hong, C.-C. Fu, T.F. Yang, K.-L. Wen, and C.-H. Chen (2009), Continuous temporal soil-gas composition variations for earthquake precursory studies along Hsincheng and Hsinhua faults in Taiwan, Radiat. Meas. 44, 9-10, 934-939, DOI: 10.1016/j.radmeas.2009.10.010.
  • Walia, V., T.F. Yang, S.-J. Lin, A. Kumar, C.-C. Fu, J.-M. Chiu, H.-H. Chang, K.-L. Wen, and C.-H. Chen (2012), Temporal variation of soil gas compositions for earthquake surveillance in Taiwan, Radiat. Meas. 50, 154-159, DOI: 10.1016/j.radmeas.2012.11.007.
  • Washington, J.W., and A.W. Rose (1990), Regional and temporal relations of radon in soil gas to soil temperature and moisture, Geophys. Res. Lett. 17, 6, 829-832, DOI: 10.1029/GL017i006p00829.
  • Winkler, R., F. Ruckerbauer, and K. Bunzl (2001), Radon concentration in soil gas: a comparison of the variability resulting from different methods, spatial heterogeneity and seasonal fluctuations, Sci. Total Environ. 272, 1-3, 273-282, DOI: 10.1016/S0048-9697(01)00704-5.
  • Wyss, M., and R. Dmowska (eds.) (1997), Earthquake Prediction – State of the Art, Birkhauser Verlag, Basel, 272 pp.
  • Yen, H.-Y., C.-H. Chen, Y.-H. Yeh, J.-Y. Liu, C.-R. Lin, and Y.B. Tsai (2004), Geomagnetic fluctuations during the 1999 Chi-Chi earthquake in Taiwan, Earth Planets Space 56, 39-45.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-682865ef-fa96-47bb-a9e1-a4fa457edc77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.