PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Roadway support design based on in-situ stress and its asymmetrical distributions in a coal mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Through in-situ stress measurements, stress data were obtained from an auxiliary transportation roadway in a coal mine in Shanxi Province, China. Based on the principles of elastic mechanics and using a generalized plane strain model, the mechanical effects of the in-situ stresses on an idealized roadway were calculated and the distributions of stresses, displacements, and plastic zones determined. Building on this model, the vulnerable zones in the roadway cross section were identified. Ground support specifications were developed and during specification design, comprehensive consideration was given to factors affecting the stability of the rock surrounding the roadway. A scientific and reasonable support scheme was put forward. Practical experience in the coal mine shows the normal forces of anchor bolt and cable, the minimal convergence of roof to floor, and a generally good support in the auxiliary transportation roadway. The support should ensure safe production during its service life. This study provides a new method for designing roadway support systems that can be particularly valuable for high-stress roadways.
Rocznik
Strony
299--315
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
  • Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221116, China; China University of Mining & Technology, State Key Laboratory of Coal Resources and Safe Mining, Xuzhou 221116, China
autor
  • China University of Mining & Technology, Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China; School of Mines; Xuzhou, 221116, China
  • Institute of Mining Engineering, Guizhou Institute of Technology, Guiyang 550003, China
Bibliografia
  • [1] B.T. Shen, Coal Mine Roadway Stability in Soft Rock: A Case Study. Rock Mech. Rock Eng. (2014), DOI: 10.1007/s00603-013-0528-y.
  • [2] Y.T. Zheng, Rock Mechanics of Elastoplastic Problems. China Coal Industry Publishing House, Beijing (1988).
  • [3] Y. Lu, X.Z. Zou, C.Y. Liu, J.B. Bai, Roadway Layout in Tectonic Stress Field. J. Min. Safety Eng. (2008), DOI: 10.3969/j.issn.1673-3363.2008.02.004.
  • [4] D.H. Chen, X.Z. Hua, Impact of In-situ Stress on Layout Direction of Deep Typical Gateways. Chin. J. Undergr. Sp. Eng. (2018), DOI: CNKI:SUN:BASE.0.2018-04-034.
  • [5] T.Q. Xiao, G.H. Zhi, Z.G. Zhang, Relationship Between Ground Stress Distribution and Roadway Stability in Deep Tectonic Region. J. Min. Safety Eng. 30 (5), 659-664 (2013).
  • [6] H.Q. Liu, MSc thesis, Study on the Relationship of the Ground Stress and Roadway Surrounding Rock Stability in Gucheng Coal Mine. China University of Mining and Technology, Xuzhou, China (2014).
  • [7] G.Z. Xue, C. Gu, C, X.Q. Fang, T. Wei, A Case Study on Large Deformation Failure Mechanism and Control Techniques for Soft Rock Roadways in Tectonic Stress Areas. Sustainability. (2019), DOI: 10.3390/su11133510.
  • [8] H. Li, B.Q. Lin, Y.D. Hong, Y.B. Gao, W. Yang, T. Liu, R. Wang, Z.B. Huang, Stress and Displacement Evolution Features of Opening Seam in Mine Cross Cut Based on Different In-Situ Rock Stress and Orientations. Int. J. Min. Sci. Tech. (2017), DOI: 10.13199/j.cnki.cst.2017.10.015.
  • [9] Q.B. Meng, L.J. Han, W.G. Qiao, D.G. Lin, Y.X. Lv, Research on Deep Soft Roadway Stability Based on In-site Geo-Stress Measurement. Chin. J. Undergr. Sp. Eng. (2012), DOI: 10.1007/s11783-011-0280-z.
  • [10] C.D. Tian, H.B. Bai, Impact Analysis of Roadway Size and Layout on Stability of Surrounding Rock. Safety in Coal Mines (2015), DOI: 10.13347/j.cnki.mkaq.2015.08.064.
  • [11] B.H. Zhang, L.J. Han, G.L. Han, Y.N. Wang, Study of 3D In-Situ Stress Measurement and Stability of Roadways in Depth. Rock and Soil Mech. (2008), DOI:10.1016/S1872-5813(08)60033-X.
  • [12] P.F. Gou, S.J. Wei, S. Zhang, Numerical Simulation of Effect of Horizontal Stresses at Different Levels on Stability of Roadways. J. Min. Safety Eng. (2010), DOI: CNKI:SUN:KSYL.0.2010-02-002.
  • [13] W.S. Zhao, L.J. Han, Y.D. Zhang, Study on the Change Law of Disturbance Principal Stress and the Stability of Surrounding Rock of Vertical Working Intersection. J. Min. Safety Eng. (2015), DOI: 10.13545/j.cnki.jmse. 2015.01.015.
  • [14] W.S. Zhao, L.J. Han, Z.N. Zhao, Q.B. Meng, H.Q. Liu, Influence of Principal Stress on Surrounding Rock Stability of Roadway Intersection. Rock and Soil Mech. (2015), DOI: 10.16285/j.rsm.2015.06.029.
  • [15] P. Małkowski, Z. Niedbalski, T. Majcherczyk, Roadway Design Efficiency Indices for Hard Coal Mines. Acta Geodyn Geomater. (2016), DOI: 10.13168/agg.2016.0002.
  • [16] F.D. Stacey, The Measurement of Stress Effects in Rock Magnetism. Dev. Solid Earth Geophy. (2013), DOI: 10.1016/B978-1-4832-2894-5.50094-X.
  • [17] Z.L. Sui, L. Qiao, X.S. Sun, In-situ Stress Measurement by CSIRO Hollow Inclusion Cell in Yuyuan Mine. Metal Mine (2009), DOI: CNKI:SUN:JSKS.0.2009-08-024.
  • [18] M.L. Wu, C.T. Liao, C.S. Zhang, M.Y. Ou, Research on In-Situ Stress Measurement and Its Distribution Law in Hongtoushan Copper Mine. Chin. J. Rock Mech. Eng. (Chin). (2004), DOI: 10.1007/BF02911033.
  • [19] C.W. Liu, L. Cao, S.X. Liu, Method of “Equivalent Radius” for the Analyzing Rock Stress of High-buried Non-circular Underground Chambers. Copper. Eng. (2010), DOI: 10.3969/j.issn.1009-3842.2010.01.001.
  • [20] G.C. Li, N. Zhang, C. Wang, N.C. Zhang, B.Y. Li, Optimizing the Section Shape of Roadways in High Stress Ground by Numerical Simulation. J. Chin. Univ. Min. Tech. (2010), DOI: 10.1016/S1876-3804(11)60004-9.
  • [21] S.Q. Yang, C. Miao, G. Fang, Y.C. Wang, B. Meng, Y.H. Li, H.W. Jing, Physical Experiment and Numerical Modelling of Tunnel Excavation in Slanted Upper-Soft and Lower-Hard Strata. Tunn. Undergr. Sp. Tech. (2018), DOI: 10.1016/j.tust.2018.08.049.
  • [22] W.G. Cao, M.H. Zhao, C.X. Liu, Study on Rectified Method of Mohr-Coulomb Strength Criterion for Rock Based on Statistical Damage Theory. Chin. J. Rock. Mech. Eng. (2005), DOI: 10.1007/s11769-005-0030-x.
  • [23] Y.D. Lin , M. Tu, Resolving Analysis of Rock Plastic Zone in Round Roadway with Inhomogenous Stress Field. Coal Sci. Tech. Mag. (2011), DOI: CNKI:SUN:META.0.2011-02-016.
  • [24] X.X. Yang, H.W. Jing, K.F. Chen, W.L. Wang, Study on Influence Law of In-Situ Stress in Deep Underground Rocks on the Size of Failure Zone in Roadway. J. Min. Safety Eng. 30 (4), 495-500 (2013).
  • [25] W.H. Zha, X.Z. Hua, D.H. Chen , Quantitative Analysis of Plastic Region in Deep Buried Tunnel Based on In-Situ Stress Test. J. Exp. Mech. (2013), DOI: CNKI:SUN:SYLX.0.2013-05-016.
  • [26] M.L. Zhang, Y.D. Zhang, Stability Evaluation Method for Gateways in Closely Spaced Coal Seams and Surround-ing Rock Control Technology. Arab. J. Sci. Eng. (2018), DOI: 10.1007/s13369-018-3201-7.
  • [27] Z. Niedbalski, P. Małkowski, T. Majcherczyk, Monitoring of Stand-and-Roof-Bolting Support: Design Optimiza-tion. Acta Geodyn. Geomater. (2013), DOI: 10.13168/AGG.2013.0022.
  • [28] T. Majcherczyk, P. Małkowski, Z. Niedbalski, Rock Mass Movements Around Development Workings in Various Density of Standing-and-Roof-Bolting Support. J. Coal Sci. Eng. (Chin). (2008), DOI: 10.1007/s12404-008-0078-1.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-68232957-4bb6-4cab-8bba-47d76831b31f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.